UNPKG

@astermind/astermind-pro

Version:

Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis

57 lines 1.48 kB
import { type SparseVec } from './vectorization.js'; import type { Kernel } from '../types.js'; export interface RetrievedChunk { heading: string; content: string; rich?: string; score?: number; index?: number; } export interface HybridRetrievalOptions { query: string; chunks: Array<{ heading: string; content: string; rich?: string; }>; vocabMap: Map<string, number>; idf: number[]; tfidfDocs: SparseVec[]; denseDocs: Float64Array[]; landmarksIdx: number[]; landmarkMat: Float64Array[]; vocabSize: number; kernel: Kernel; sigma: number; alpha: number; beta: number; ridge: number; headingW: number; useStem: boolean; expandQuery: boolean; topK: number; prefilter?: number; } export interface HybridRetrievalResult { items: RetrievedChunk[]; scores: number[]; indices: number[]; tfidfScores: number[]; denseScores: number[]; } /** * Compute keyword bonus scores for chunks */ export declare function keywordBonus(chunks: Array<{ content: string; rich?: string; }>, query: string): number[]; /** * Get top K indices from scores */ export declare function topKIndices(arr: number[] | Float64Array, k: number): number[]; /** * Perform hybrid retrieval (sparse + dense + keyword bonus) */ export declare function hybridRetrieve(opts: HybridRetrievalOptions): HybridRetrievalResult; //# sourceMappingURL=hybrid-retriever.d.ts.map