@astermind/astermind-pro
Version:
Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis
42 lines • 1.29 kB
TypeScript
export type TEBaseOpts = {
window?: number;
condLags?: number;
xLags?: number;
normalize?: boolean;
};
export type PWSOpts = TEBaseOpts & {
tailQuantile?: number;
tailBoost?: number;
decay?: number;
usePWS?: boolean;
jitterSigma?: number;
pwsIters?: number;
bandwidth?: number;
ridge?: number;
bits?: boolean;
};
export declare class TransferEntropyPWS {
private opts;
private xBuf;
private yBuf;
private yDiffBuf;
private wBuf;
constructor(opts?: PWSOpts);
/** Push one synchronized sample (vectors OK). */
push(x: number[] | number, y: number[] | number): void;
/** Basic Phase-2 call: choose PWS or vanilla IS+KDE based on opts.usePWS */
estimate(): number;
/** Vanilla importance-weighted TE via KDE (no path jitter). */
estimateIS(): number;
/** Path-Weight Sampling: jitter past contexts, average conditional entropies. */
estimatePWS(): number;
}
/** Manage many labeled links, PWS-enabled. Same API as Phase-1. */
export declare class InfoFlowGraphPWS {
private defaultOpts;
private monitors;
constructor(defaultOpts?: PWSOpts);
get(name: string): TransferEntropyPWS;
snapshot(): Record<string, number>;
}
//# sourceMappingURL=TransferEntropyPWS.d.ts.map