UNPKG

@astermind/astermind-premium

Version:

Astermind Premium - Premium ML Toolkit

1,453 lines (1,110 loc) 40.3 kB
# Real-World Examples: Premium ELM Variants by Industry This document provides practical, real-world examples of how each Premium ELM variant can be used across different business verticals. --- ## 1. Adaptive Online ELM ### Finance: Real-Time Fraud Detection **Use Case**: Continuously adapt to new fraud patterns as they emerge ```javascript import { AdaptiveOnlineELM } from '@astermind/astermind-premium'; const fraudDetector = new AdaptiveOnlineELM({ categories: ['legitimate', 'fraud', 'suspicious'], initialHiddenUnits: 128, minHiddenUnits: 64, maxHiddenUnits: 512 }); // Initial training on historical data fraudDetector.fit(historicalTransactions, historicalLabels); // Real-time updates as new transactions arrive setInterval(() => { const newTransaction = getLatestTransaction(); const result = fraudDetector.predict(newTransaction, 1); if (result[0].label === 'fraud') { blockTransaction(newTransaction); } // Periodically update with verified fraud cases if (isVerifiedFraud(newTransaction)) { fraudDetector.update(newTransaction, 1); // Label 1 = fraud } }, 1000); // Check every second ``` ### Transportation: Dynamic Route Optimization **Use Case**: Adapt to changing traffic patterns and road conditions ```javascript const routeOptimizer = new AdaptiveOnlineELM({ categories: ['optimal', 'moderate', 'congested'], initialHiddenUnits: 96 }); // Train on historical route data routeOptimizer.fit(routeFeatures, congestionLevels); // Update in real-time as new traffic data arrives function optimizeRoute(origin, destination) { const currentConditions = getCurrentTrafficData(origin, destination); const prediction = routeOptimizer.predict(currentConditions, 1); if (prediction[0].label === 'congested') { return findAlternativeRoute(origin, destination); } // Update model with actual congestion experienced routeOptimizer.update(currentConditions, actualCongestionLevel); } ``` ### Healthcare: Patient Monitoring **Use Case**: Continuously adapt to patient condition changes in ICU ```javascript const patientMonitor = new AdaptiveOnlineELM({ categories: ['stable', 'monitoring', 'critical'], initialHiddenUnits: 64 }); // Monitor patient vitals every minute setInterval(() => { const vitals = getPatientVitals(patientId); const status = patientMonitor.predict(vitals, 1); if (status[0].label === 'critical') { alertMedicalStaff(patientId); } // Update with actual patient outcomes patientMonitor.update(vitals, actualPatientStatus); }, 60000); ``` --- ## 2. Forgetting Online ELM ### Logistics: Warehouse Inventory Management **Use Case**: Prioritize recent demand patterns over outdated data ```javascript import { ForgettingOnlineELM } from '@astermind/astermind-premium'; const inventoryPredictor = new ForgettingOnlineELM({ categories: ['low_stock', 'adequate', 'overstock'], forgettingFactor: 0.92 // Higher = forgets slower }); // Seasonal products need faster forgetting const seasonalPredictor = new ForgettingOnlineELM({ categories: ['low_stock', 'adequate', 'overstock'], forgettingFactor: 0.85 // Faster forgetting for seasonal trends }); // Update daily with new sales data function updateInventoryModel(dailySales) { inventoryPredictor.update(dailySales, calculateStockLevel(dailySales)); // Recent data weighted more heavily than old seasonal patterns if (isSeasonalProduct(dailySales.productId)) { seasonalPredictor.update(dailySales, calculateStockLevel(dailySales)); } } ``` ### Finance: Stock Price Movement Prediction **Use Case**: Focus on recent market trends, forget outdated patterns ```javascript const stockPredictor = new ForgettingOnlineELM({ categories: ['buy', 'hold', 'sell'], forgettingFactor: 0.90 }); // Update every trading day function predictStockMovement(symbol) { const marketData = getMarketIndicators(symbol); const prediction = stockPredictor.predict(marketData, 1); // Old market conditions automatically weighted less return prediction[0].label; } ``` ### Science: Climate Monitoring **Use Case**: Track recent climate changes while de-emphasizing historical anomalies ```javascript const climateAnalyzer = new ForgettingOnlineELM({ categories: ['normal', 'anomaly', 'extreme'], forgettingFactor: 0.95 // Slow forgetting for climate data }); // Update monthly with new climate readings function analyzeClimateData(monthlyReadings) { const analysis = climateAnalyzer.predict(monthlyReadings, 1); if (analysis[0].label === 'extreme') { triggerClimateAlert(monthlyReadings); } climateAnalyzer.update(monthlyReadings, verifiedClimateCategory); } ``` --- ## 3. Hierarchical ELM ### Healthcare: Medical Diagnosis System **Use Case**: Multi-level diagnosis from symptoms to specific conditions ```javascript import { HierarchicalELM } from '@astermind/astermind-premium'; const diagnosisSystem = new HierarchicalELM({ hierarchy: { 'root': ['infectious', 'non_infectious'], 'infectious': ['bacterial', 'viral', 'fungal'], 'bacterial': ['strep', 'staph', 'e_coli'], 'viral': ['influenza', 'covid', 'common_cold'], 'non_infectious': ['autoimmune', 'genetic', 'environmental'] }, rootCategories: ['root'] }); // Patient symptoms const symptoms = [fever, cough, fatigue, bodyAches]; // Get hierarchical diagnosis const diagnosis = diagnosisSystem.predict(symptoms, 3); // Returns: [ // { path: ['root', 'infectious', 'viral', 'influenza'], prob: 0.85 }, // { path: ['root', 'infectious', 'viral', 'covid'], prob: 0.12 }, // ... // ] console.log(`Primary diagnosis: ${diagnosis[0].path.join(' → ')}`); ``` ### Science: Biological Classification **Use Case**: Classify organisms from kingdom to species ```javascript const organismClassifier = new HierarchicalELM({ hierarchy: { 'root': ['animalia', 'plantae', 'fungi'], 'animalia': ['mammalia', 'aves', 'reptilia'], 'mammalia': ['carnivora', 'herbivora', 'omnivora'], 'carnivora': ['canidae', 'felidae', 'ursidae'] }, rootCategories: ['root'] }); // Classify from DNA sequence features const organismFeatures = extractDNAFeatures(dnaSequence); const classification = organismClassifier.predict(organismFeatures, 1); // Returns: { path: ['root', 'animalia', 'mammalia', 'carnivora', 'canidae'], prob: 0.92 } ``` ### Finance: Risk Assessment Hierarchy **Use Case**: Assess risk from general category to specific risk type ```javascript const riskAssessor = new HierarchicalELM({ hierarchy: { 'root': ['low_risk', 'medium_risk', 'high_risk'], 'high_risk': ['credit_risk', 'market_risk', 'operational_risk'], 'credit_risk': ['default_risk', 'counterparty_risk'], 'market_risk': ['liquidity_risk', 'volatility_risk'] }, rootCategories: ['root'] }); // Assess loan application const loanFeatures = [creditScore, income, debtRatio, employmentHistory]; const riskAssessment = riskAssessor.predict(loanFeatures, 1); // Returns: { path: ['root', 'high_risk', 'credit_risk', 'default_risk'], prob: 0.78 } ``` --- ## 4. Attention-Enhanced ELM ### Healthcare: Medical Image Analysis **Use Case**: Focus on critical regions in X-rays or MRIs ```javascript import { AttentionEnhancedELM } from '@astermind/astermind-premium'; const medicalImageAnalyzer = new AttentionEnhancedELM({ categories: ['normal', 'benign', 'malignant'], attentionUnits: 256 }); // Analyze chest X-ray const xrayFeatures = extractImageFeatures(chestXray); const diagnosis = medicalImageAnalyzer.predict(xrayFeatures, 3); // Attention mechanism automatically focuses on suspicious regions if (diagnosis[0].label === 'malignant') { highlightAttentionRegions(xrayFeatures); // Show where model focused } ``` ### Finance: Document Analysis **Use Case**: Focus on key terms in financial documents ```javascript const documentAnalyzer = new AttentionEnhancedELM({ categories: ['approved', 'needs_review', 'rejected'], attentionUnits: 128 }); // Analyze loan application documents const documentFeatures = extractTextFeatures(loanDocuments); const decision = documentAnalyzer.predict(documentFeatures, 1); // Attention highlights important clauses or red flags if (decision[0].label === 'needs_review') { showAttentionHighlights(documentFeatures); // Highlight key sections } ``` ### Transportation: Traffic Pattern Analysis **Use Case**: Focus on critical intersections or bottlenecks ```javascript const trafficAnalyzer = new AttentionEnhancedELM({ categories: ['flowing', 'moderate', 'congested'], attentionUnits: 192 }); // Analyze city-wide traffic data const trafficFeatures = getTrafficSensorData(); const status = trafficAnalyzer.predict(trafficFeatures, 1); // Attention mechanism identifies problem areas if (status[0].label === 'congested') { const problemAreas = getAttentionRegions(trafficFeatures); dispatchTrafficControl(problemAreas); } ``` --- ## 5. Variational ELM ### Finance: Risk Assessment with Uncertainty **Use Case**: Quantify uncertainty in investment decisions ```javascript import { VariationalELM } from '@astermind/astermind-premium'; const riskAnalyzer = new VariationalELM({ categories: ['low_risk', 'medium_risk', 'high_risk'] }); // Assess investment opportunity const investmentFeatures = [marketVolatility, companyMetrics, economicIndicators]; const assessment = riskAnalyzer.predict(investmentFeatures, 3, true); // Include uncertainty // Returns: [ // { // label: 'medium_risk', // prob: 0.75, // uncertainty: 0.15, // 15% uncertainty // confidence: 0.85 // 85% confidence // }, // ... // ] if (assessment[0].uncertainty > 0.20) { console.log('High uncertainty - gather more data before decision'); } else if (assessment[0].confidence > 0.90) { proceedWithInvestment(); } ``` ### Healthcare: Diagnostic Confidence **Use Case**: Provide confidence levels for medical diagnoses ```javascript const diagnosticSystem = new VariationalELM({ categories: ['healthy', 'monitoring', 'treatment_needed'] }); // Patient test results const testResults = [bloodPressure, heartRate, labResults]; const diagnosis = diagnosticSystem.predict(testResults, 3, true); if (diagnosis[0].uncertainty < 0.10 && diagnosis[0].confidence > 0.95) { // High confidence - proceed with treatment prescribeTreatment(diagnosis[0].label); } else { // Low confidence - order additional tests orderAdditionalTests(); } ``` ### Science: Experimental Result Analysis **Use Case**: Quantify uncertainty in scientific measurements ```javascript const experimentAnalyzer = new VariationalELM({ categories: ['significant', 'inconclusive', 'insignificant'] }); // Analyze experimental data const experimentalData = [measurements, controls, replicates]; const result = experimentAnalyzer.predict(experimentalData, 1, true); if (result[0].label === 'significant' && result[0].uncertainty < 0.05) { publishResults(result); } else { runAdditionalExperiments(); } ``` --- ## 6. Time-Series ELM ### Finance: Stock Price Forecasting **Use Case**: Predict future stock prices from historical sequences ```javascript import { TimeSeriesELM } from '@astermind/astermind-premium'; const stockForecaster = new TimeSeriesELM({ categories: ['bullish', 'neutral', 'bearish'], sequenceLength: 30 // 30 days of history }); // Prepare sequences: each sequence is 30 days of price data const priceSequences = []; for (let i = 0; i < historicalData.length - 30; i++) { const sequence = historicalData.slice(i, i + 30).map(day => [ day.open, day.high, day.low, day.close, day.volume ]); priceSequences.push(sequence); } const labels = historicalData.slice(30).map(day => day.close > day.open ? 0 : 2 // 0=bullish, 2=bearish ); stockForecaster.train(priceSequences, labels); // Predict next day movement const recentSequence = getLast30Days(); const prediction = stockForecaster.predict(recentSequence, 1); ``` ### Transportation: Predictive Maintenance **Use Case**: Predict equipment failures from sensor time-series ```javascript const maintenancePredictor = new TimeSeriesELM({ categories: ['normal', 'maintenance_needed', 'failure_imminent'], sequenceLength: 24 // 24 hours of sensor data }); // Train on historical sensor sequences const sensorSequences = getHistoricalSensorData(); // Each sequence is 24 hours const failureLabels = getHistoricalFailureData(); maintenancePredictor.train(sensorSequences, failureLabels); // Monitor equipment in real-time function monitorEquipment(equipmentId) { const last24Hours = getSensorData(equipmentId, 24); const prediction = maintenancePredictor.predict(last24Hours, 1); if (prediction[0].label === 'failure_imminent') { scheduleEmergencyMaintenance(equipmentId); } } ``` ### Healthcare: Patient Vital Monitoring **Use Case**: Predict patient deterioration from vital sign sequences ```javascript const vitalMonitor = new TimeSeriesELM({ categories: ['stable', 'deteriorating', 'critical'], sequenceLength: 12 // 12 hours of vital signs }); // Monitor ICU patient function monitorPatient(patientId) { const vitalSequence = getVitalSigns(patientId, 12); // Last 12 hours const prediction = vitalMonitor.predict(vitalSequence, 1); if (prediction[0].label === 'deteriorating') { alertMedicalStaff(patientId); } } ``` --- ## 7. Transfer Learning ELM ### Science: Cross-Domain Research **Use Case**: Apply knowledge from one research domain to another ```javascript import { TransferLearningELM } from '@astermind/astermind-premium'; // Pre-trained on protein folding data const proteinModel = new TransferLearningELM({ categories: ['folded', 'unfolded', 'misfolded'], transferRate: 0.4 // 40% knowledge transfer }); // Transfer to drug interaction prediction const drugInteractionModel = new TransferLearningELM({ categories: ['safe', 'caution', 'dangerous'], transferRate: 0.3 // Less transfer for different domain }); // Use pre-trained knowledge from protein model drugInteractionModel.transferFrom(proteinModel); drugInteractionModel.train(drugData, interactionLabels); ``` ### Finance: Cross-Market Analysis **Use Case**: Transfer knowledge from one market to another ```javascript // Trained on US stock market const usMarketModel = new TransferLearningELM({ categories: ['buy', 'hold', 'sell'], transferRate: 0.5 }); // Transfer to European market const europeanMarketModel = new TransferLearningELM({ categories: ['buy', 'hold', 'sell'], transferRate: 0.5 }); europeanMarketModel.transferFrom(usMarketModel); europeanMarketModel.train(europeanMarketData, europeanLabels); ``` ### Healthcare: Cross-Population Medical Models **Use Case**: Adapt medical models across different patient populations ```javascript // Trained on adult patient data const adultModel = new TransferLearningELM({ categories: ['healthy', 'at_risk', 'disease'], transferRate: 0.3 }); // Transfer to pediatric population const pediatricModel = new TransferLearningELM({ categories: ['healthy', 'at_risk', 'disease'], transferRate: 0.3 }); pediatricModel.transferFrom(adultModel); pediatricModel.train(pediatricData, pediatricLabels); ``` --- ## 8. Graph ELM ### Science: Molecular Structure Analysis **Use Case**: Analyze chemical compounds represented as graphs ```javascript import { GraphELM } from '@astermind/astermind-premium'; const molecularAnalyzer = new GraphELM({ categories: ['active', 'inactive', 'toxic'] }); // Represent molecule as graph const molecule = { nodes: [ { id: 'C1', features: [6, 1, 0] }, // Carbon atom features { id: 'O1', features: [8, 2, 0] }, // Oxygen atom features { id: 'N1', features: [7, 3, 0] } // Nitrogen atom features ], edges: [ { source: 'C1', target: 'O1' }, // Chemical bond { source: 'C1', target: 'N1' } ] }; const activity = molecularAnalyzer.predict(molecule, 1); // Predicts if molecule is biologically active ``` ### Transportation: Network Route Analysis **Use Case**: Analyze transportation networks as graphs ```javascript const routeAnalyzer = new GraphELM({ categories: ['efficient', 'moderate', 'inefficient'] }); // Represent city as graph const cityNetwork = { nodes: [ { id: 'intersection1', features: [trafficVolume, signalTiming] }, { id: 'intersection2', features: [trafficVolume, signalTiming] } ], edges: [ { source: 'intersection1', target: 'intersection2' } // Road connection ] }; const efficiency = routeAnalyzer.predict(cityNetwork, 1); ``` ### Logistics: Supply Chain Network **Use Case**: Analyze supply chain relationships ```javascript const supplyChainAnalyzer = new GraphELM({ categories: ['resilient', 'vulnerable', 'critical'] }); // Represent supply chain as graph const supplyChain = { nodes: [ { id: 'supplier1', features: [capacity, reliability, cost] }, { id: 'warehouse1', features: [inventory, throughput] }, { id: 'retailer1', features: [demand, location] } ], edges: [ { source: 'supplier1', target: 'warehouse1' }, { source: 'warehouse1', target: 'retailer1' } ] }; const resilience = supplyChainAnalyzer.predict(supplyChain, 1); ``` --- ## 9. Adaptive Kernel ELM ### Finance: Dynamic Market Analysis **Use Case**: Automatically adapt kernel parameters for different market conditions ```javascript import { AdaptiveKernelELM } from '@astermind/astermind-premium'; const marketAnalyzer = new AdaptiveKernelELM({ categories: ['bull', 'bear', 'volatile'], kernelType: 'rbf' // Automatically optimizes RBF parameters }); // Adapts kernel parameters based on market volatility marketAnalyzer.train(marketData, marketLabels); // Automatically selects optimal kernel parameters for current conditions const prediction = marketAnalyzer.predict(currentMarketData, 1); ``` ### Science: Experimental Data Analysis **Use Case**: Adapt to different experimental conditions ```javascript const experimentAnalyzer = new AdaptiveKernelELM({ categories: ['success', 'partial', 'failure'], kernelType: 'polynomial' }); // Automatically adapts to different experimental setups experimentAnalyzer.train(experimentalData, experimentalResults); ``` ### Healthcare: Patient Population Adaptation **Use Case**: Adapt to different patient demographics ```javascript const patientAnalyzer = new AdaptiveKernelELM({ categories: ['low_risk', 'medium_risk', 'high_risk'], kernelType: 'rbf' }); // Automatically adapts kernel for different age groups, conditions patientAnalyzer.train(patientData, riskLabels); ``` --- ## 10. Sparse Kernel ELM ### Finance: Large-Scale Portfolio Analysis **Use Case**: Efficiently analyze thousands of assets using landmark points ```javascript import { SparseKernelELM } from '@astermind/astermind-premium'; const portfolioAnalyzer = new SparseKernelELM({ categories: ['diversified', 'concentrated', 'risky'], numLandmarks: 100 // Use 100 landmark points instead of all assets }); // Analyze portfolio of 10,000 assets efficiently const portfolioFeatures = getPortfolioData(10000); portfolioAnalyzer.train(portfolioFeatures, portfolioLabels); // Fast prediction using only landmark points const risk = portfolioAnalyzer.predict(newPortfolio, 1); ``` ### Logistics: Large Warehouse Optimization **Use Case**: Optimize inventory across thousands of SKUs ```javascript const inventoryOptimizer = new SparseKernelELM({ categories: ['optimal', 'overstock', 'understock'], numLandmarks: 200 }); // Efficiently analyze 50,000 SKUs const skuData = getInventoryData(50000); inventoryOptimizer.train(skuData, stockLevels); ``` ### Science: Large Dataset Analysis **Use Case**: Analyze massive experimental datasets ```javascript const dataAnalyzer = new SparseKernelELM({ categories: ['significant', 'insignificant'], numLandmarks: 500 }); // Analyze millions of data points efficiently const experimentalData = getLargeDataset(1000000); dataAnalyzer.train(experimentalData, significanceLabels); ``` --- ## 11. Ensemble Kernel ELM ### Finance: Robust Investment Decisions **Use Case**: Combine multiple models for reliable predictions ```javascript import { EnsembleKernelELM } from '@astermind/astermind-premium'; const investmentAdvisor = new EnsembleKernelELM({ categories: ['buy', 'hold', 'sell'], numModels: 5 // 5 ensemble members }); investmentAdvisor.train(marketData, investmentLabels); const recommendation = investmentAdvisor.predict(currentMarket, 1); // Returns: { label: 'buy', prob: 0.85, votes: 4 } // 4 out of 5 models agree if (recommendation.votes >= 4) { // High agreement - proceed with confidence executeTrade(recommendation.label); } else { // Low agreement - wait for more consensus waitForMoreData(); } ``` ### Healthcare: Diagnostic Consensus **Use Case**: Multiple models agree on diagnosis ```javascript const diagnosticEnsemble = new EnsembleKernelELM({ categories: ['healthy', 'disease_a', 'disease_b'], numModels: 7 }); const diagnosis = diagnosticEnsemble.predict(patientData, 1); if (diagnosis.votes >= 6) { // Strong consensus - high confidence diagnosis proceedWithTreatment(diagnosis.label); } else { // Weak consensus - order additional tests orderSecondOpinion(); } ``` ### Transportation: Route Reliability **Use Case**: Multiple models predict route efficiency ```javascript const routeEnsemble = new EnsembleKernelELM({ categories: ['fast', 'moderate', 'slow'], numModels: 3 }); const routePrediction = routeEnsemble.predict(routeData, 1); if (routePrediction.votes === 3) { // All models agree - high confidence recommendRoute(routePrediction.label); } ``` --- ## 12. Deep Kernel ELM ### Science: Complex Pattern Recognition **Use Case**: Multi-layer transformations for complex scientific data ```javascript import { DeepKernelELM } from '@astermind/astermind-premium'; const patternRecognizer = new DeepKernelELM({ categories: ['pattern_a', 'pattern_b', 'pattern_c'], numLayers: 4 // 4-layer deep kernel transformation }); // Analyze complex scientific patterns patternRecognizer.train(complexData, patternLabels); // Deep layers extract hierarchical features const pattern = patternRecognizer.predict(newData, 1); ``` ### Finance: Multi-Level Market Analysis **Use Case**: Deep analysis of market structures ```javascript const marketAnalyzer = new DeepKernelELM({ categories: ['trending_up', 'trending_down', 'sideways'], numLayers: 3 }); // Deep layers capture market microstructure marketAnalyzer.train(marketData, trendLabels); ``` ### Healthcare: Multi-Scale Medical Analysis **Use Case**: Analyze medical data at multiple scales ```javascript const medicalAnalyzer = new DeepKernelELM({ categories: ['normal', 'abnormal', 'critical'], numLayers: 5 }); // Deep layers capture features from cellular to organ level medicalAnalyzer.train(medicalData, diagnosisLabels); ``` --- ## 13. Robust Kernel ELM ### Finance: Fraud Detection with Outlier Handling **Use Case**: Detect fraud while handling noisy transaction data ```javascript import { RobustKernelELM } from '@astermind/astermind-premium'; const fraudDetector = new RobustKernelELM({ categories: ['legitimate', 'fraud'], outlierThreshold: 0.1 }); fraudDetector.train(transactionData, fraudLabels); const analysis = fraudDetector.predict(transaction, 1); // Returns: { label: 'fraud', prob: 0.92, isOutlier: false } if (analysis.isOutlier) { // Transaction is statistical outlier - investigate flagForManualReview(transaction); } else if (analysis.label === 'fraud') { // Confident fraud detection blockTransaction(transaction); } ``` ### Science: Experimental Data with Noise **Use Case**: Handle noisy experimental measurements ```javascript const experimentAnalyzer = new RobustKernelELM({ categories: ['significant', 'insignificant'], outlierThreshold: 0.15 }); const result = experimentAnalyzer.predict(measurement, 1); if (result.isOutlier) { // Measurement may be contaminated - repeat experiment repeatMeasurement(); } ``` ### Healthcare: Patient Monitoring with Sensor Noise **Use Case**: Handle noisy medical sensor data ```javascript const vitalMonitor = new RobustKernelELM({ categories: ['normal', 'abnormal'], outlierThreshold: 0.12 }); const reading = vitalMonitor.predict(sensorData, 1); if (reading.isOutlier) { // Sensor may be malfunctioning - check equipment checkSensorCalibration(); } ``` --- ## 14. ELM-KELM Cascade ### Finance: Multi-Stage Risk Assessment **Use Case**: First ELM stage, then Kernel ELM refinement ```javascript import { ELMKELMCascade } from '@astermind/astermind-premium'; const riskAssessor = new ELMKELMCascade({ categories: ['low_risk', 'medium_risk', 'high_risk'] }); // ELM stage: Quick initial assessment // KELM stage: Refined analysis for complex cases riskAssessor.train(loanApplications, riskLabels); const assessment = riskAssessor.predict(application, 1); ``` ### Healthcare: Two-Stage Diagnosis **Use Case**: Quick screening, then detailed analysis ```javascript const diagnosticCascade = new ELMKELMCascade({ categories: ['healthy', 'monitoring', 'treatment'] }); // ELM: Fast initial screening // KELM: Detailed analysis for flagged cases diagnosticCascade.train(patientData, diagnosisLabels); ``` ### Transportation: Route Optimization Cascade **Use Case**: Quick route selection, then detailed optimization ```javascript const routeOptimizer = new ELMKELMCascade({ categories: ['optimal', 'suboptimal', 'poor'] }); // ELM: Quick route filtering // KELM: Detailed optimization routeOptimizer.train(routeData, efficiencyLabels); ``` --- ## 15. String Kernel ELM ### Finance: Document Classification **Use Case**: Classify financial documents by content ```javascript import { StringKernelELM } from '@astermind/astermind-premium'; const documentClassifier = new StringKernelELM({ categories: ['approved', 'needs_review', 'rejected'] }); // Train on financial documents const documents = [ 'Loan application for $500,000...', 'Credit report shows excellent history...', 'Bankruptcy filing from 2020...' ]; const labels = [1, 0, 2]; // needs_review, approved, rejected documentClassifier.train(documents, labels); // Classify new document const newDocument = 'Mortgage application with 750 credit score...'; const classification = documentClassifier.predict([newDocument], 1); ``` ### Healthcare: Medical Record Analysis **Use Case**: Analyze patient notes and medical records ```javascript const medicalRecordAnalyzer = new StringKernelELM({ categories: ['routine', 'urgent', 'critical'] }); const records = [ 'Patient presents with mild symptoms...', 'Patient reports severe chest pain...', 'Routine checkup, all vitals normal...' ]; const labels = [0, 2, 0]; // routine, critical, routine medicalRecordAnalyzer.train(records, labels); // Analyze new patient note const newNote = 'Patient reports difficulty breathing...'; const priority = medicalRecordAnalyzer.predict([newNote], 1); ``` ### Logistics: Shipping Label Classification **Use Case**: Classify shipping labels and addresses ```javascript const shippingClassifier = new StringKernelELM({ categories: ['domestic', 'international', 'express'] }); const labels = [ '123 Main St, New York, NY 10001', '45 High Street, London, UK', '789 Oak Ave, Los Angeles, CA 90001 - EXPRESS' ]; const categories = [0, 1, 2]; // domestic, international, express shippingClassifier.train(labels, categories); ``` --- ## 16. Convolutional ELM ### Healthcare: Medical Image Analysis **Use Case**: Analyze X-rays, MRIs, CT scans ```javascript import { ConvolutionalELM } from '@astermind/astermind-premium'; const medicalImageAnalyzer = new ConvolutionalELM({ categories: ['normal', 'benign', 'malignant'], filterSize: 3, numFilters: 32 }); // Images: 2D arrays representing medical images const images = [ [[pixel values...], [pixel values...]], // X-ray 1 [[pixel values...], [pixel values...]] // X-ray 2 ]; const labels = [0, 1]; // normal, benign medicalImageAnalyzer.train(images, labels); // Analyze new X-ray const newXray = [[pixel values...]]; const diagnosis = medicalImageAnalyzer.predict(newXray, 1); ``` ### Transportation: Traffic Sign Recognition **Use Case**: Recognize traffic signs from images ```javascript const signRecognizer = new ConvolutionalELM({ categories: ['stop', 'yield', 'speed_limit', 'no_entry'], filterSize: 5, numFilters: 16 }); // Train on traffic sign images signRecognizer.train(signImages, signLabels); // Recognize sign from camera const cameraImage = getCameraImage(); const sign = signRecognizer.predict(cameraImage, 1); ``` ### Science: Satellite Image Analysis **Use Case**: Analyze satellite imagery for environmental monitoring ```javascript const satelliteAnalyzer = new ConvolutionalELM({ categories: ['forest', 'urban', 'water', 'agriculture'], filterSize: 7, numFilters: 64 }); // Analyze land use from satellite images satelliteAnalyzer.train(satelliteImages, landUseLabels); ``` --- ## 17. Recurrent ELM ### Finance: Sequential Trading Patterns **Use Case**: Analyze sequential trading data with memory ```javascript import { RecurrentELM } from '@astermind/astermind-premium'; const tradingAnalyzer = new RecurrentELM({ categories: ['buy_signal', 'sell_signal', 'hold'], hiddenSize: 128 }); // Sequences: Each sequence is a series of trading periods const tradingSequences = [ [[price1, volume1], [price2, volume2], [price3, volume3]], // Sequence 1 [[price4, volume4], [price5, volume5], [price6, volume6]] // Sequence 2 ]; const labels = [0, 1]; // buy_signal, sell_signal tradingAnalyzer.train(tradingSequences, labels); // Predict next action from recent sequence const recentSequence = getLastTradingPeriods(10); const action = tradingAnalyzer.predict(recentSequence, 1); // Returns: { label: 'buy_signal', prob: 0.88, hiddenState: [...] } ``` ### Healthcare: Patient Monitoring Sequences **Use Case**: Track patient condition over time with memory ```javascript const patientMonitor = new RecurrentELM({ categories: ['stable', 'improving', 'deteriorating'], hiddenSize: 64 }); // Sequences: Hourly vital sign readings const vitalSequences = [ [[bp1, hr1, temp1], [bp2, hr2, temp2], ...], // Patient 1 [[bp3, hr3, temp3], [bp4, hr4, temp4], ...] // Patient 2 ]; patientMonitor.train(vitalSequences, patientOutcomes); // Monitor current patient const currentSequence = getLastHours(12); const status = patientMonitor.predict(currentSequence, 1); ``` ### Transportation: Route Sequence Analysis **Use Case**: Analyze route efficiency over time ```javascript const routeAnalyzer = new RecurrentELM({ categories: ['efficient', 'moderate', 'inefficient'], hiddenSize: 96 }); // Sequences: Hourly route performance const routeSequences = [ [[traffic1, time1], [traffic2, time2], ...], // Route A [[traffic3, time3], [traffic4, time4], ...] // Route B ]; routeAnalyzer.train(routeSequences, efficiencyLabels); ``` --- ## 18. Fuzzy ELM ### Finance: Credit Scoring with Membership **Use Case**: Flexible credit assessment with membership degrees ```javascript import { FuzzyELM } from '@astermind/astermind-premium'; const creditScorer = new FuzzyELM({ categories: ['excellent', 'good', 'fair', 'poor'] }); creditScorer.train(creditData, creditScores); const assessment = creditScorer.predict(applicantData, 1); // Returns: { // label: 'good', // prob: 0.75, // membership: 0.82, // 82% membership in 'good' category // confidence: 0.88 // } if (assessment.membership > 0.80) { // High membership - clear category approveLoan(assessment.label); } else { // Low membership - borderline case, manual review manualReview(applicantData); } ``` ### Healthcare: Symptom Severity Assessment **Use Case**: Assess symptom severity with fuzzy boundaries ```javascript const symptomAnalyzer = new FuzzyELM({ categories: ['mild', 'moderate', 'severe'] }); const assessment = symptomAnalyzer.predict(symptomData, 1); if (assessment.membership < 0.60) { // Symptoms don't clearly fit one category - investigate further orderAdditionalTests(); } ``` ### Logistics: Delivery Time Estimation **Use Case**: Estimate delivery times with uncertainty ```javascript const deliveryEstimator = new FuzzyELM({ categories: ['on_time', 'delayed', 'severely_delayed'] }); const estimate = deliveryEstimator.predict(deliveryData, 1); if (estimate.membership > 0.85) { // High confidence in estimate notifyCustomer(estimate.label); } ``` --- ## 19. Quantum-Inspired ELM ### Science: Quantum Chemistry Simulations **Use Case**: Model quantum states in molecular systems ```javascript import { QuantumInspiredELM } from '@astermind/astermind-premium'; const quantumAnalyzer = new QuantumInspiredELM({ categories: ['stable', 'unstable', 'transition'], numQubits: 16 }); quantumAnalyzer.train(molecularData, stabilityLabels); const prediction = quantumAnalyzer.predict(molecule, 1); // Returns: { // label: 'stable', // prob: 0.92, // quantumState: [complex amplitudes...], // amplitude: 0.96 // } // Use quantum state for further quantum computations const quantumState = prediction.quantumState; ``` ### Finance: Portfolio Optimization **Use Case**: Use quantum principles for portfolio selection ```javascript const portfolioOptimizer = new QuantumInspiredELM({ categories: ['optimal', 'suboptimal'], numQubits: 32 }); // Quantum superposition explores multiple portfolio combinations const portfolio = portfolioOptimizer.predict(assetData, 1); ``` ### Science: Protein Folding Prediction **Use Case**: Model quantum effects in protein structures ```javascript const proteinFolding = new QuantumInspiredELM({ categories: ['folded', 'unfolded', 'misfolded'], numQubits: 24 }); // Quantum effects important at molecular scale proteinFolding.train(proteinData, foldingStates); ``` --- ## 20. Graph Kernel ELM ### Science: Molecular Interaction Networks **Use Case**: Analyze complex molecular interaction graphs ```javascript import { GraphKernelELM } from '@astermind/astermind-premium'; const interactionAnalyzer = new GraphKernelELM({ categories: ['strong_interaction', 'weak_interaction', 'no_interaction'] }); // Represent molecular interaction network const interactionGraph = { nodes: [ { id: 'protein1', features: [molecularWeight, charge] }, { id: 'protein2', features: [molecularWeight, charge] }, { id: 'ligand1', features: [bindingAffinity] } ], edges: [ { source: 'protein1', target: 'protein2' }, { source: 'ligand1', target: 'protein1' } ] }; const interaction = interactionAnalyzer.predict(interactionGraph, 1); ``` ### Transportation: Transportation Network Analysis **Use Case**: Analyze complex transportation networks ```javascript const networkAnalyzer = new GraphKernelELM({ categories: ['efficient', 'moderate', 'inefficient'] }); // City transportation network const cityNetwork = { nodes: [ { id: 'station1', features: [passengerVolume, connections] }, { id: 'station2', features: [passengerVolume, connections] } ], edges: [ { source: 'station1', target: 'station2' } ] }; const efficiency = networkAnalyzer.predict(cityNetwork, 1); ``` ### Logistics: Supply Chain Network Resilience **Use Case**: Analyze supply chain resilience ```javascript const resilienceAnalyzer = new GraphKernelELM({ categories: ['resilient', 'vulnerable', 'critical'] }); // Supply chain as graph const supplyChain = { nodes: [ { id: 'factory1', features: [capacity, reliability] }, { id: 'warehouse1', features: [inventory, location] } ], edges: [ { source: 'factory1', target: 'warehouse1' } ] }; const resilience = resilienceAnalyzer.predict(supplyChain, 1); ``` --- ## 21. Tensor Kernel ELM ### Science: Multi-Channel Experimental Data **Use Case**: Analyze 3D tensor data from multi-channel experiments ```javascript import { TensorKernelELM } from '@astermind/astermind-premium'; const experimentAnalyzer = new TensorKernelELM({ categories: ['significant', 'insignificant'] }); // Tensors: 3D data from multi-channel experiments // Each tensor has multiple channels (e.g., different sensors) const experimentalTensors = [ [ [[sensor1_ch1], [sensor1_ch2]], // Channel 1 data [[sensor2_ch1], [sensor2_ch2]] // Channel 2 data ] ]; experimentAnalyzer.train(experimentalTensors, significanceLabels); // Analyze new experiment const newTensor = [ [[new_sensor1_ch1], [new_sensor1_ch2]], [[new_sensor2_ch1], [new_sensor2_ch2]] ]; const result = experimentAnalyzer.predict(newTensor, 1); ``` ### Healthcare: Multi-Modal Medical Imaging **Use Case**: Analyze 3D medical imaging data (CT, MRI with multiple slices) ```javascript const medicalImagingAnalyzer = new TensorKernelELM({ categories: ['normal', 'abnormal', 'tumor'] }); // 3D tensor: Multiple imaging slices/channels const imagingTensor = [ [ [[slice1_pixels...], [slice1_pixels...]], // Slice 1 [[slice2_pixels...], [slice2_pixels...]] // Slice 2 ] ]; medicalImagingAnalyzer.train(imagingTensors, diagnosisLabels); // Analyze new patient scan const patientScan = getCTScan(); const diagnosis = medicalImagingAnalyzer.predict(patientScan, 1); ``` ### Transportation: Multi-Sensor Vehicle Data **Use Case**: Analyze data from multiple vehicle sensors simultaneously ```javascript const vehicleAnalyzer = new TensorKernelELM({ categories: ['normal', 'maintenance_needed', 'failure'] }); // 3D tensor: Multiple sensors over time const vehicleTensor = [ [ [[sensor1_time1], [sensor1_time2]], // Sensor 1 over time [[sensor2_time1], [sensor2_time2]], // Sensor 2 over time [[sensor3_time1], [sensor3_time2]] // Sensor 3 over time ] ]; vehicleAnalyzer.train(vehicleTensors, maintenanceLabels); // Monitor vehicle in real-time const currentTensor = getCurrentSensorData(); const status = vehicleAnalyzer.predict(currentTensor, 1); ``` --- ## Industry-Specific Use Case Matrix | Industry | Variant | Primary Use Case | |----------|---------|------------------| | **Finance** | Adaptive Online ELM | Real-time fraud detection | | **Finance** | Variational ELM | Risk assessment with uncertainty | | **Finance** | Ensemble Kernel ELM | Investment decision consensus | | **Finance** | Robust Kernel ELM | Fraud detection with noisy data | | **Finance** | String Kernel ELM | Document classification | | **Healthcare** | Hierarchical ELM | Multi-level diagnosis | | **Healthcare** | Attention-Enhanced ELM | Medical image analysis | | **Healthcare** | Time-Series ELM | Patient vital monitoring | | **Healthcare** | Recurrent ELM | Sequential patient data | | **Healthcare** | Convolutional ELM | Medical imaging (X-ray, MRI) | | **Healthcare** | Tensor Kernel ELM | Multi-modal medical imaging | | **Transportation** | Adaptive Online ELM | Dynamic route optimization | | **Transportation** | Time-Series ELM | Predictive maintenance | | **Transportation** | Graph ELM | Network route analysis | | **Transportation** | Convolutional ELM | Traffic sign recognition | | **Transportation** | Recurrent ELM | Route sequence analysis | | **Logistics** | Forgetting Online ELM | Warehouse inventory management | | **Logistics** | Sparse Kernel ELM | Large warehouse optimization | | **Logistics** | Graph ELM | Supply chain network analysis | | **Logistics** | String Kernel ELM | Shipping label classification | | **Science** | Hierarchical ELM | Biological classification | | **Science** | Transfer Learning ELM | Cross-domain research | | **Science** | Graph Kernel ELM | Molecular interaction networks | | **Science** | Quantum-Inspired ELM | Quantum chemistry simulations | | **Science** | Tensor Kernel ELM | Multi-channel experimental data | --- ## Getting Started with Examples 1. **Choose your variant** based on your use case 2. **Install Premium**: `npm install @astermind/astermind-premium` 3. **Set up license**: `export ASTERMIND_LICENSE_TOKEN="your-token"` 4. **Import the variant** you need 5. **Prepare your data** in the required format 6. **Train the model** on your data 7. **Make predictions** on new data For more detailed examples, see the [main documentation](./README.md). --- **Last Updated**: November 24, 2025