@astermind/astermind-premium
Version:
Astermind Premium - Premium ML Toolkit
70 lines • 1.94 kB
TypeScript
export interface TimeSeriesELMOptions {
categories: string[];
hiddenUnits?: number;
sequenceLength?: number;
lookbackWindow?: number;
useRecurrent?: boolean;
activation?: 'relu' | 'tanh' | 'sigmoid' | 'linear';
maxLen?: number;
useTokenizer?: boolean;
}
export interface TimeSeriesELMResult {
label: string;
prob: number;
forecast?: number[];
}
/**
* Time-Series ELM for temporal pattern recognition
* Features:
* - Temporal pattern recognition
* - Optional recurrent connections
* - Sequence-to-sequence prediction
* - Forecasting capabilities
*/
export declare class TimeSeriesELM {
private elm;
private categories;
private options;
private history;
private trained;
constructor(options: TimeSeriesELMOptions);
/**
* Train on time-series data
* @param X Sequences of features (each element is a time step)
* @param y Labels for each sequence
*/
train(X: number[][][], y: number[] | string[]): void;
/**
* Train on single sequences (convenience method)
*/
trainSequences(sequences: number[][][], labels: number[] | string[]): void;
/**
* Predict from time-series sequence
*/
predict(sequence: number[][] | number[][][], topK?: number): TimeSeriesELMResult[];
/**
* Forecast future values (for regression/forecasting tasks)
*/
forecast(sequence: number[][], steps?: number): number[][];
/**
* Flatten sequences to feature vectors
*/
private _flattenSequences;
/**
* Flatten a single sequence
*/
private _flattenSequence;
/**
* Update history for recurrent mode
*/
private _updateHistory;
/**
* Enhance features with history (recurrent mode)
*/
private _enhanceWithHistory;
/**
* Clear history (useful for new sequences)
*/
clearHistory(): void;
}
//# sourceMappingURL=time-series-elm.d.ts.map