UNPKG

@astermind/astermind-premium

Version:

Astermind Premium - Premium ML Toolkit

70 lines 1.94 kB
export interface TimeSeriesELMOptions { categories: string[]; hiddenUnits?: number; sequenceLength?: number; lookbackWindow?: number; useRecurrent?: boolean; activation?: 'relu' | 'tanh' | 'sigmoid' | 'linear'; maxLen?: number; useTokenizer?: boolean; } export interface TimeSeriesELMResult { label: string; prob: number; forecast?: number[]; } /** * Time-Series ELM for temporal pattern recognition * Features: * - Temporal pattern recognition * - Optional recurrent connections * - Sequence-to-sequence prediction * - Forecasting capabilities */ export declare class TimeSeriesELM { private elm; private categories; private options; private history; private trained; constructor(options: TimeSeriesELMOptions); /** * Train on time-series data * @param X Sequences of features (each element is a time step) * @param y Labels for each sequence */ train(X: number[][][], y: number[] | string[]): void; /** * Train on single sequences (convenience method) */ trainSequences(sequences: number[][][], labels: number[] | string[]): void; /** * Predict from time-series sequence */ predict(sequence: number[][] | number[][][], topK?: number): TimeSeriesELMResult[]; /** * Forecast future values (for regression/forecasting tasks) */ forecast(sequence: number[][], steps?: number): number[][]; /** * Flatten sequences to feature vectors */ private _flattenSequences; /** * Flatten a single sequence */ private _flattenSequence; /** * Update history for recurrent mode */ private _updateHistory; /** * Enhance features with history (recurrent mode) */ private _enhanceWithHistory; /** * Clear history (useful for new sequences) */ clearHistory(): void; } //# sourceMappingURL=time-series-elm.d.ts.map