UNPKG

@astermind/astermind-premium

Version:

Astermind Premium - Premium ML Toolkit

62 lines 1.6 kB
export interface SparseKernelELMOptions { categories: string[]; kernelType?: 'rbf' | 'polynomial' | 'linear' | 'sigmoid'; numLandmarks?: number; landmarkSelection?: 'random' | 'kmeans' | 'diverse'; gamma?: number; degree?: number; coef0?: number; activation?: 'relu' | 'tanh' | 'sigmoid' | 'linear'; maxLen?: number; useTokenizer?: boolean; } export interface SparseKernelELMResult { label: string; prob: number; } /** * Sparse Kernel ELM with landmark-based approximation * Features: * - Sparse kernel matrix approximation * - Landmark selection strategies * - Reduced computational complexity * - Scalable to large datasets */ export declare class SparseKernelELM { private kelm; private categories; private options; private landmarks; private trained; constructor(options: SparseKernelELMOptions); /** * Train with sparse kernel approximation */ train(X: number[][], y: number[] | string[]): void; /** * Select landmark points */ private _selectLandmarks; /** * K-means landmark selection */ private _kmeansLandmarks; /** * Diverse landmark selection */ private _diverseLandmarks; /** * Get labels for landmarks */ private _getLandmarkLabels; private _euclideanDistance; /** * Predict using sparse kernel */ predict(X: number[] | number[][], topK?: number): SparseKernelELMResult[]; /** * Get selected landmarks */ getLandmarks(): number[][]; } //# sourceMappingURL=sparse-kernel-elm.d.ts.map