UNPKG

@assistant-ui/react

Version:

Typescript/React library for AI Chat

235 lines (209 loc) 6.65 kB
import { LanguageModelV1, LanguageModelV1ToolChoice, LanguageModelV1FunctionTool, LanguageModelV1Prompt, LanguageModelV1CallOptions, } from "@ai-sdk/provider"; import { CoreMessage, ThreadMessage, ThreadStep, } from "../../types/AssistantTypes"; import { EdgeRuntimeRequestOptionsSchema } from "./EdgeRuntimeRequestOptions"; import { toLanguageModelMessages } from "./converters/toLanguageModelMessages"; import { toLanguageModelTools } from "./converters/toLanguageModelTools"; import { toolResultStream } from "./streams/toolResultStream"; import { LanguageModelConfig, LanguageModelV1CallSettings, LanguageModelV1CallSettingsSchema, Tool, } from "../../model-context/ModelContextTypes"; import { z } from "zod"; import { AssistantMessage, AssistantMessageAccumulator, AssistantStreamChunk, DataStreamEncoder, } from "assistant-stream"; import { LanguageModelV1StreamDecoder } from "assistant-stream/ai-sdk"; type FinishResult = { messages: readonly (CoreMessage | ThreadMessage)[]; metadata: { steps: readonly ThreadStep[]; }; }; type LanguageModelCreator = ( config: LanguageModelConfig, ) => Promise<LanguageModelV1> | LanguageModelV1; export type CreateEdgeRuntimeAPIOptions = LanguageModelV1CallSettings & { model: LanguageModelV1 | LanguageModelCreator; system?: string; tools?: Record<string, Tool<any, any>>; toolChoice?: LanguageModelV1ToolChoice; onFinish?: (result: FinishResult) => void; }; type GetEdgeRuntimeStreamOptions = { abortSignal: AbortSignal; requestData: z.infer<typeof EdgeRuntimeRequestOptionsSchema>; options: CreateEdgeRuntimeAPIOptions; }; export const getEdgeRuntimeStream = async ({ abortSignal, requestData: unsafeRequest, options: { model: modelOrCreator, system: serverSystem, tools: serverTools = {}, toolChoice, onFinish, ...unsafeSettings }, }: GetEdgeRuntimeStreamOptions) => { const settings = LanguageModelV1CallSettingsSchema.parse(unsafeSettings); const lmServerTools = toLanguageModelTools(serverTools); const hasServerTools = Object.values(serverTools).some((v) => !!v.execute); const { system: clientSystem, tools: clientTools = [], messages, apiKey, baseUrl, modelName, ...callSettings } = EdgeRuntimeRequestOptionsSchema.parse(unsafeRequest); const systemMessages = []; if (serverSystem) systemMessages.push(serverSystem); if (clientSystem) systemMessages.push(clientSystem); const system = systemMessages.join("\n\n"); for (const clientTool of clientTools) { if (serverTools?.[clientTool.name]) { throw new Error( `Tool ${clientTool.name} was defined in both the client and server tools. This is not allowed.`, ); } } const model = typeof modelOrCreator === "function" ? await modelOrCreator({ apiKey, baseUrl, modelName }) : modelOrCreator; let stream: ReadableStream<AssistantStreamChunk>; const streamResult = await streamMessage({ ...(settings as Partial<StreamMessageOptions>), ...callSettings, model, abortSignal, ...(!!system ? { system } : undefined), messages, tools: lmServerTools.concat(clientTools as LanguageModelV1FunctionTool[]), ...(toolChoice ? { toolChoice } : undefined), }); stream = streamResult.stream.pipeThrough(new LanguageModelV1StreamDecoder()); // add tool results if we have server tools const canExecuteTools = hasServerTools && toolChoice?.type !== "none"; if (canExecuteTools) { stream = stream.pipeThrough(toolResultStream(serverTools, abortSignal)); } if (canExecuteTools || onFinish) { // tee the stream to process server tools and onFinish asap const tees = stream.tee(); stream = tees[0]; let serverStream = tees[1]; if (onFinish) { let lastChunk: AssistantMessage | undefined; serverStream.pipeThrough(new AssistantMessageAccumulator()).pipeTo( new WritableStream({ write(chunk) { lastChunk = chunk; }, close() { if (!lastChunk?.status || lastChunk.status.type === "running") return; const resultingMessages = [ ...messages, { id: "DEFAULT", createdAt: new Date(), role: "assistant", content: lastChunk.content, status: lastChunk.status, metadata: lastChunk.metadata, } satisfies ThreadMessage, ]; onFinish({ messages: resultingMessages, metadata: { steps: lastChunk.metadata.steps, }, }); }, abort(e) { console.error("Server stream processing error:", e); }, }), ); } } return stream; }; export declare namespace getEdgeRuntimeResponse { export type { GetEdgeRuntimeStreamOptions as Options }; } export const getEdgeRuntimeResponse = async ( options: getEdgeRuntimeResponse.Options, ) => { const stream = await getEdgeRuntimeStream(options); return new Response(stream.pipeThrough(new DataStreamEncoder()), { headers: { "Content-Type": "text/plain; charset=utf-8", "x-vercel-ai-data-stream": "v1", }, }); }; export const createEdgeRuntimeAPI = (options: CreateEdgeRuntimeAPIOptions) => ({ POST: async (request: Request) => getEdgeRuntimeResponse({ abortSignal: request.signal, requestData: await request.json(), options, }), }); type StreamMessageOptions = LanguageModelV1CallSettings & { model: LanguageModelV1; system?: string; messages: readonly CoreMessage[]; tools?: LanguageModelV1FunctionTool[]; toolChoice?: LanguageModelV1ToolChoice; abortSignal: AbortSignal; }; async function streamMessage({ model, system, messages, tools, toolChoice, ...options }: StreamMessageOptions) { return model.doStream({ inputFormat: "messages", mode: { type: "regular", ...(tools ? { tools } : undefined), ...(toolChoice ? { toolChoice } : undefined), }, prompt: convertToLanguageModelPrompt(system, messages), ...(options as Partial<LanguageModelV1CallOptions>), }); } export function convertToLanguageModelPrompt( system: string | undefined, messages: readonly CoreMessage[], ): LanguageModelV1Prompt { const languageModelMessages: LanguageModelV1Prompt = []; if (system != null) { languageModelMessages.push({ role: "system", content: system }); } languageModelMessages.push(...toLanguageModelMessages(messages)); return languageModelMessages; }