UNPKG

@ashleysmart/react-native-vision-camera-face-detector

Version:

Frame Processor Plugin to detect faces using MLKit Vision Face Detector for React Native Vision Camera!

170 lines (151 loc) 3.66 kB
import { VisionCameraProxy, type Frame } from '@ashleysmart/react-native-vision-camera' type DetectFacesType = { /** Current frame */ frame: Frame /** Optional callback */ callback?: CallbackType /** Detection options */ options?: FaceDetectionOptions } type Point = { x: number y: number } export type CallbackType = ( result: DetectionResult ) => void | Promise<void> export interface DetectionResult { faces: { [ index: string ]: Face } frame: FrameData } export interface Face { pitchAngle: number rollAngle: number yawAngle: number bounds: Bounds leftEyeOpenProbability: number rightEyeOpenProbability: number smilingProbability: number contours: Contours landmarks: Landmarks } export interface FrameData { converted?: string original?: Frame } export interface Bounds { width: number height: number x: number y: number } export interface Contours { FACE: Point[] LEFT_EYEBROW_TOP: Point[] LEFT_EYEBROW_BOTTOM: Point[] RIGHT_EYEBROW_TOP: Point[] RIGHT_EYEBROW_BOTTOM: Point[] LEFT_EYE: Point[] RIGHT_EYE: Point[] UPPER_LIP_TOP: Point[] UPPER_LIP_BOTTOM: Point[] LOWER_LIP_TOP: Point[] LOWER_LIP_BOTTOM: Point[] NOSE_BRIDGE: Point[] NOSE_BOTTOM: Point[] LEFT_CHEEK: Point[] RIGHT_CHEEK: Point[] } export interface Landmarks { LEFT_CHEEK: Point LEFT_EAR: Point LEFT_EYE: Point MOUTH_BOTTOM: Point MOUTH_LEFT: Point MOUTH_RIGHT: Point NOSE_BASE: Point RIGHT_CHEEK: Point RIGHT_EAR: Point RIGHT_EYE: Point } export interface FaceDetectionOptions { /** * Favor speed or accuracy when detecting faces. * * @default 'fast' */ performanceMode?: 'fast' | 'accurate' /** * Whether to attempt to identify facial 'landmarks': eyes, ears, nose, cheeks, mouth, and so on. * * @default 'none' */ landmarkMode?: 'none' | 'all' /** * Whether to detect the contours of facial features. Contours are detected for only the most prominent face in an image. * * @default 'none' */ contourMode?: 'none' | 'all' /** * Whether or not to classify faces into categories such as 'smiling', and 'eyes open'. * * @default 'none' */ classificationMode?: 'none' | 'all' /** * Sets the smallest desired face size, expressed as the ratio of the width of the head to width of the image. * * @default 0.1 */ minFaceSize?: number /** * Whether or not to assign faces an ID, which can be used to track faces across images. * * Note that when contour detection is enabled, only one face is detected, so face tracking doesn't produce useful results. For this reason, and to improve detection speed, don't enable both contour detection and face tracking. * * @default false */ trackingEnabled?: boolean /** * Should return converted frame as base64? * * Note that no frame data will be returned if disabled. * * @default false */ convertFrame?: boolean /** * Should return original frame data? * * WARNING: On my tests this freeze frame processor pipeline on IOS. * * @default false */ returnOriginal?: boolean } const plugin = VisionCameraProxy.initFrameProcessorPlugin( 'detectFaces', {} ) /** * Detect faces on frame * * @param {DetectFacesType} props Detect faces prop */ export function detectFaces( { frame, callback, options }: DetectFacesType ): DetectionResult { 'worklet' if ( !plugin ) { throw new Error( 'Failed to load Frame Processor Plugin "detectFaces"!' ) } // @ts-ignore const result: DetectionResult = plugin.call( frame, options ) callback?.( result ) return result }