@arcgis/core
Version:
ArcGIS Maps SDK for JavaScript: A complete 2D and 3D mapping and data visualization API
6 lines (5 loc) • 4.31 kB
JavaScript
/*
All material copyright ESRI, All Rights Reserved, unless otherwise specified.
See https://js.arcgis.com/4.33/esri/copyright.txt for details.
*/
import{create as t}from"../factories/mat3f64.js";import{create as n}from"../factories/quatf64.js";import{fromValues as s,create as o}from"../factories/vec3f64.js";import{getEpsilon as a,RANDOM as r}from"./common.js";import{e,h as c,H as i,n as u}from"../../../../chunks/vec32.js";import{s as h,a as M,n as f,c as l,h as m,d as p,g as q,l as j,j as d,b as g,e as P}from"../../../../chunks/vec42.js";function I(t){return t[0]=0,t[1]=0,t[2]=0,t[3]=1,t}function b(t,n,s){s*=.5;const o=Math.sin(s);return t[0]=o*n[0],t[1]=o*n[1],t[2]=o*n[2],t[3]=Math.cos(s),t}function v(t,n){const s=2*Math.acos(n[3]),o=Math.sin(s/2);return o>a()?(t[0]=n[0]/o,t[1]=n[1]/o,t[2]=n[2]/o):(t[0]=1,t[1]=0,t[2]=0),s}function x(t,n,s){const o=n[0],a=n[1],r=n[2],e=n[3],c=s[0],i=s[1],u=s[2],h=s[3];return t[0]=o*h+e*c+a*u-r*i,t[1]=a*h+e*i+r*c-o*u,t[2]=r*h+e*u+o*i-a*c,t[3]=e*h-o*c-a*i-r*u,t}function y(t,n,s){s*=.5;const o=n[0],a=n[1],r=n[2],e=n[3],c=Math.sin(s),i=Math.cos(s);return t[0]=o*i+e*c,t[1]=a*i+r*c,t[2]=r*i-a*c,t[3]=e*i-o*c,t}function A(t,n,s){s*=.5;const o=n[0],a=n[1],r=n[2],e=n[3],c=Math.sin(s),i=Math.cos(s);return t[0]=o*i-r*c,t[1]=a*i+e*c,t[2]=r*i+o*c,t[3]=e*i-a*c,t}function _(t,n,s){s*=.5;const o=n[0],a=n[1],r=n[2],e=n[3],c=Math.sin(s),i=Math.cos(s);return t[0]=o*i+a*c,t[1]=a*i-o*c,t[2]=r*i+e*c,t[3]=e*i-r*c,t}function k(t,n){const s=n[0],o=n[1],a=n[2];return t[0]=s,t[1]=o,t[2]=a,t[3]=Math.sqrt(Math.abs(1-s*s-o*o-a*a)),t}function z(t,n,s,o){const r=n[0],e=n[1],c=n[2],i=n[3];let u,h,M,f,l,m=s[0],p=s[1],q=s[2],j=s[3];return h=r*m+e*p+c*q+i*j,h<0&&(h=-h,m=-m,p=-p,q=-q,j=-j),1-h>a()?(u=Math.acos(h),M=Math.sin(u),f=Math.sin((1-o)*u)/M,l=Math.sin(o*u)/M):(f=1-o,l=o),t[0]=f*r+l*m,t[1]=f*e+l*p,t[2]=f*c+l*q,t[3]=f*i+l*j,t}function E(t){const n=r,s=n(),o=n(),a=n(),e=Math.sqrt(1-s),c=Math.sqrt(s);return t[0]=e*Math.sin(2*Math.PI*o),t[1]=e*Math.cos(2*Math.PI*o),t[2]=c*Math.sin(2*Math.PI*a),t[3]=c*Math.cos(2*Math.PI*a),t}function L(t,n){const s=n[0],o=n[1],a=n[2],r=n[3],e=s*s+o*o+a*a+r*r,c=e?1/e:0;return t[0]=-s*c,t[1]=-o*c,t[2]=-a*c,t[3]=r*c,t}function O(t,n){return t[0]=-n[0],t[1]=-n[1],t[2]=-n[2],t[3]=n[3],t}function S(t,n){const s=n[0]+n[4]+n[8];let o;if(s>0)o=Math.sqrt(s+1),t[3]=.5*o,o=.5/o,t[0]=(n[5]-n[7])*o,t[1]=(n[6]-n[2])*o,t[2]=(n[1]-n[3])*o;else{let s=0;n[4]>n[0]&&(s=1),n[8]>n[3*s+s]&&(s=2);const a=(s+1)%3,r=(s+2)%3;o=Math.sqrt(n[3*s+s]-n[3*a+a]-n[3*r+r]+1),t[s]=.5*o,o=.5/o,t[3]=(n[3*a+r]-n[3*r+a])*o,t[a]=(n[3*a+s]+n[3*s+a])*o,t[r]=(n[3*r+s]+n[3*s+r])*o}return t}function T(t,n,s,o){const a=.5*Math.PI/180;n*=a,s*=a,o*=a;const r=Math.sin(n),e=Math.cos(n),c=Math.sin(s),i=Math.cos(s),u=Math.sin(o),h=Math.cos(o);return t[0]=r*i*h-e*c*u,t[1]=e*c*h+r*i*u,t[2]=e*i*u-r*c*h,t[3]=e*i*h+r*c*u,t}function H(t){return"quat("+t[0]+", "+t[1]+", "+t[2]+", "+t[3]+")"}const W=l,X=h,Y=m,Z=x,w=p,B=q,C=j,D=d,F=D,G=g,J=G,K=f,N=M,Q=P;function R(t,n,s){const o=e(n,s);return o<-.999999?(c(U,V,n),i(U)<1e-6&&c(U,$,n),u(U,U),b(t,U,Math.PI),t):o>.999999?(t[0]=0,t[1]=0,t[2]=0,t[3]=1,t):(c(U,n,s),t[0]=U[0],t[1]=U[1],t[2]=U[2],t[3]=1+o,K(t,t))}const U=o(),V=s(1,0,0),$=s(0,1,0);function tt(t,n,s,o,a,r){return z(nt,n,a,r),z(st,s,o,r),z(t,nt,st,2*r*(1-r)),t}const nt=n(),st=n();function ot(t,n,s,o){const a=at;return a[0]=s[0],a[3]=s[1],a[6]=s[2],a[1]=o[0],a[4]=o[1],a[7]=o[2],a[2]=-n[0],a[5]=-n[1],a[8]=-n[2],K(t,S(t,a))}const at=t(),rt=Object.freeze(Object.defineProperty({__proto__:null,add:Y,calculateW:k,conjugate:O,copy:W,dot:B,equals:Q,exactEquals:N,fromEuler:T,fromMat3:S,getAxisAngle:v,identity:I,invert:L,len:F,length:D,lerp:C,mul:Z,multiply:x,normalize:K,random:E,rotateX:y,rotateY:A,rotateZ:_,rotationTo:R,scale:w,set:X,setAxes:ot,setAxisAngle:b,slerp:z,sqlerp:tt,sqrLen:J,squaredLength:G,str:H},Symbol.toStringTag,{value:"Module"}));export{Y as add,k as calculateW,O as conjugate,W as copy,B as dot,Q as equals,N as exactEquals,T as fromEuler,S as fromMat3,v as getAxisAngle,I as identity,L as invert,F as len,D as length,C as lerp,Z as mul,x as multiply,K as normalize,rt as q,E as random,y as rotateX,A as rotateY,_ as rotateZ,R as rotationTo,w as scale,X as set,ot as setAxes,b as setAxisAngle,z as slerp,tt as sqlerp,J as sqrLen,G as squaredLength,H as str};