@antv/g6
Version:
A Graph Visualization Framework in JavaScript
256 lines • 12 kB
JavaScript
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.EdgeBundling = void 0;
const util_1 = require("@antv/util");
const constants_1 = require("../../constants");
const edge_1 = require("../../utils/edge");
const id_1 = require("../../utils/id");
const position_1 = require("../../utils/position");
const vector_1 = require("../../utils/vector");
const base_plugin_1 = require("../base-plugin");
/**
* <zh/> 边绑定
*
* <en/> Edge bundling
* @remarks
* <zh/> 边绑定(Edge Bundling)是一种图可视化技术,用于减少复杂网络图中的视觉混乱,并揭示图中的高级别模式和结构。其思想是将相邻的边捆绑在一起。
*
* <zh/> G6 中提供的边绑定插件是基于 FEDB(Force-Directed Edge Bundling for Graph Visualization)一文的实现:将边建模为可以相互吸引的柔性弹簧,通过自组织的方式进行捆绑。
*
* <en/> Edge bundling is a graph visualization technique used to reduce visual clutter in complex network graphs and reveal high-level patterns and structures in the graph. The idea is to bundle adjacent edges together.
*
* <en/> The edge bundling plugin provided in G6 is based on the implementation of the paper FEDB (Force-Directed Edge Bundling for Graph Visualization): modeling edges as flexible springs that can attract each other and bundling them in a self-organizing way.
*/
class EdgeBundling extends base_plugin_1.BasePlugin {
constructor(context, options) {
super(context, Object.assign({}, EdgeBundling.defaultOptions, options));
this.edgeBundles = {};
this.edgePoints = {};
this.onBundle = () => {
const { model, element } = this.context;
const edges = model.getEdgeData();
this.divideEdges(this.options.divisions);
const { cycles, iterRate, divRate } = this.options;
let { lambda, divisions, iterations } = this.options;
for (let i = 0; i < cycles; i++) {
for (let j = 0; j < iterations; j++) {
const forces = {};
edges.forEach((edge) => {
var _a;
if (edge.source === edge.target)
return;
const edgeId = (0, id_1.idOf)(edge);
forces[edgeId] = this.getEdgeForces(edge, divisions, lambda);
for (let p = 0; p < divisions + 1; p++) {
(_a = this.edgePoints)[edgeId] || (_a[edgeId] = []);
this.edgePoints[edgeId][p] = (0, vector_1.add)(this.edgePoints[edgeId][p], forces[edgeId][p]);
}
});
}
// parameters for next cycle
lambda /= 2;
divisions *= divRate;
iterations *= iterRate;
this.divideEdges(divisions);
}
edges.forEach((edge) => {
const edgeId = (0, id_1.idOf)(edge);
const edgeEl = element.getElement(edgeId);
edgeEl === null || edgeEl === void 0 ? void 0 : edgeEl.update({ d: (0, edge_1.getPolylinePath)(this.edgePoints[edgeId]) });
});
};
this.bindEvents();
}
get nodeMap() {
const nodes = this.context.model.getNodeData();
return Object.fromEntries(nodes.map((node) => [(0, id_1.idOf)(node), (0, vector_1.toVector2)((0, position_1.positionOf)(node))]));
}
divideEdges(divisions) {
const edges = this.context.model.getEdgeData();
edges.forEach((edge) => {
var _a;
const edgeId = (0, id_1.idOf)(edge);
(_a = this.edgePoints)[edgeId] || (_a[edgeId] = []);
const source = this.nodeMap[edge.source];
const target = this.nodeMap[edge.target];
if (divisions === 1) {
this.edgePoints[edgeId].push(source);
this.edgePoints[edgeId].push((0, vector_1.divide)((0, vector_1.add)(source, target), 2));
this.edgePoints[edgeId].push(target);
}
else {
const edgeLength = this.edgePoints[edgeId].length === 0
? // edge is a straight line
(0, vector_1.distance)(source, target)
: // edge is a polyline
getEdgeLength(this.edgePoints[edgeId]);
const divisionLength = edgeLength / (divisions + 1);
let currentDivisionLength = divisionLength;
const newEdgePoints = [source];
for (let i = 1; i < this.edgePoints[edgeId].length; i++) {
const prevEp = this.edgePoints[edgeId][i - 1];
const ep = this.edgePoints[edgeId][i];
let oriDivisionLength = (0, vector_1.distance)(ep, prevEp);
while (oriDivisionLength > currentDivisionLength) {
const ratio = currentDivisionLength / oriDivisionLength;
const edgePoint = (0, vector_1.add)(prevEp, (0, vector_1.multiply)((0, vector_1.subtract)(ep, prevEp), ratio));
newEdgePoints.push(edgePoint);
oriDivisionLength -= currentDivisionLength;
currentDivisionLength = divisionLength;
}
currentDivisionLength -= oriDivisionLength;
}
newEdgePoints.push(target);
this.edgePoints[edgeId] = newEdgePoints;
}
});
}
getVectorPosition(edge) {
const source = this.nodeMap[edge.source];
const target = this.nodeMap[edge.target];
const [vx, vy] = (0, vector_1.subtract)(target, source);
const length = (0, vector_1.distance)(source, target);
return { source, target, vx, vy, length };
}
measureEdgeCompatibility(edge1, edge2) {
const vector1 = this.getVectorPosition(edge1);
const vector2 = this.getVectorPosition(edge2);
const ac = getAngleCompatibility(vector1, vector2);
const sc = getScaleCompatibility(vector1, vector2);
const pc = getPositionCompatibility(vector1, vector2);
const vc = getVisibilityCompatibility(vector1, vector2);
return ac * sc * pc * vc;
}
getEdgeBundles() {
const edgeBundles = {};
const bundleThreshold = this.options.bundleThreshold;
const edges = this.context.model.getEdgeData();
edges.forEach((edge1, i) => {
edges.forEach((edge2, j) => {
var _a, _b;
if (j <= i)
return;
const compatibility = this.measureEdgeCompatibility(edge1, edge2);
if (compatibility >= bundleThreshold) {
edgeBundles[_a = (0, id_1.idOf)(edge1)] || (edgeBundles[_a] = []);
edgeBundles[(0, id_1.idOf)(edge1)].push(edge2);
edgeBundles[_b = (0, id_1.idOf)(edge2)] || (edgeBundles[_b] = []);
edgeBundles[(0, id_1.idOf)(edge2)].push(edge1);
}
});
});
return edgeBundles;
}
getSpringForce(divisions, kp) {
const { pre, cur, next } = divisions;
return (0, vector_1.multiply)((0, vector_1.subtract)((0, vector_1.add)(pre, next), (0, vector_1.multiply)(cur, 2)), kp);
}
getElectrostaticForce(pidx, edge) {
if ((0, util_1.isEmpty)(this.edgeBundles)) {
this.edgeBundles = this.getEdgeBundles();
}
const edgeBundle = this.edgeBundles[(0, id_1.idOf)(edge)];
let resForce = [0, 0];
edgeBundle === null || edgeBundle === void 0 ? void 0 : edgeBundle.forEach((eb) => {
const p1 = this.edgePoints[(0, id_1.idOf)(eb)][pidx];
const p2 = this.edgePoints[(0, id_1.idOf)(edge)][pidx];
const force = (0, vector_1.subtract)(p1, p2);
const length = (0, vector_1.distance)(p1, p2);
resForce = (0, vector_1.add)(resForce, (0, vector_1.multiply)(force, 1 / length));
});
return resForce;
}
getEdgeForces(edge, divisions, lambda) {
const source = this.nodeMap[edge.source];
const target = this.nodeMap[edge.target];
const kp = this.options.K / ((0, vector_1.distance)(source, target) * (divisions + 1));
const edgePointForces = [[0, 0]];
const edgeId = (0, id_1.idOf)(edge);
for (let i = 1; i < divisions; i++) {
const spring = this.getSpringForce({
pre: this.edgePoints[edgeId][i - 1],
cur: this.edgePoints[edgeId][i],
next: this.edgePoints[edgeId][i + 1] || [0, 0],
}, kp);
const electrostatic = this.getElectrostaticForce(i, edge);
edgePointForces.push((0, vector_1.multiply)((0, vector_1.add)(spring, electrostatic), lambda));
}
edgePointForces.push([0, 0]);
return edgePointForces;
}
bindEvents() {
const { graph } = this.context;
graph.on(constants_1.GraphEvent.AFTER_RENDER, this.onBundle);
}
unbindEvents() {
const { graph } = this.context;
graph.off(constants_1.GraphEvent.AFTER_RENDER, this.onBundle);
}
destroy() {
this.unbindEvents();
super.destroy();
}
}
exports.EdgeBundling = EdgeBundling;
EdgeBundling.defaultOptions = {
K: 0.1,
lambda: 0.1,
divisions: 1,
divRate: 2,
cycles: 6,
iterations: 90,
iterRate: 2 / 3,
bundleThreshold: 0.6,
};
// The larger the angle between edges P and Q, the smaller Ca(P,Q).
// Ca(P,Q) is 0 if P and Q are orthogonal and 1 if P and Q are parallel.
const getAngleCompatibility = (p, q) => {
return Math.abs((0, vector_1.dot)([p.vx, p.vy], [q.vx, q.vy]) / (p.length * q.length));
};
// Cs(P,Q) is 1 if P and Q have equal length and approaches 0 if the ratio between the longest and the shortest edge approaches ∞.
const getScaleCompatibility = (p, q) => {
const aLength = (p.length + q.length) / 2;
return 2 / (aLength / Math.min(p.length, q.length) + Math.max(p.length, q.length) / aLength);
};
// Cp(P,Q) is 1 if Pm and Qm coincide and approaches 0 if ||Pm −Qm|| approaches ∞.
const getPositionCompatibility = (p, q) => {
const aLength = (p.length + q.length) / 2;
const pMid = (0, vector_1.divide)((0, vector_1.add)(p.source, p.target), 2);
const qMid = (0, vector_1.divide)((0, vector_1.add)(q.source, q.target), 2);
return aLength / (aLength + (0, vector_1.distance)(pMid, qMid));
};
const projectPointToEdge = (p, e) => {
if (e.source[0] === e.target[0])
return [e.source[0], p[1]];
if (e.source[1] === e.target[1])
return [p[0], e.source[1]];
const k = (e.source[1] - e.target[1]) / (e.source[0] - e.target[0]);
const x = (k * k * e.source[0] + k * (p[1] - e.source[1]) + p[0]) / (k * k + 1);
const y = k * (x - e.source[0]) + e.source[1];
return [x, y];
};
const getEdgeVisibility = (p, q) => {
const is = projectPointToEdge(q.source, p);
const it = projectPointToEdge(q.target, p);
const iMid = (0, vector_1.divide)((0, vector_1.add)(is, it), 2);
const pMid = (0, vector_1.divide)((0, vector_1.add)(p.source, p.target), 2);
if ((0, vector_1.distance)(is, it) === 0)
return 0;
return Math.max(0, 1 - (2 * (0, vector_1.distance)(pMid, iMid)) / (0, vector_1.distance)(is, it));
};
const getVisibilityCompatibility = (p, q) => {
return Math.min(getEdgeVisibility(p, q), getEdgeVisibility(q, p));
};
/**
* Calculate the length of a polyline
* @param points - The points of the polyline
* @returns The length of the polyline
*/
const getEdgeLength = (points) => {
let length = 0;
for (let i = 1; i < points.length; i++) {
length += (0, vector_1.distance)(points[i], points[i - 1]);
}
return length;
};
//# sourceMappingURL=index.js.map