@antv/g2
Version:
the Grammar of Graphics in Javascript
74 lines • 3.22 kB
JavaScript
var __rest = (this && this.__rest) || function (s, e) {
var t = {};
for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p) && e.indexOf(p) < 0)
t[p] = s[p];
if (s != null && typeof Object.getOwnPropertySymbols === "function")
for (var i = 0, p = Object.getOwnPropertySymbols(s); i < p.length; i++) {
if (e.indexOf(p[i]) < 0 && Object.prototype.propertyIsEnumerable.call(s, p[i]))
t[p[i]] = s[p[i]];
}
return t;
};
import { deepMix } from '@antv/util';
import { mean, deviation, median, sum, max, min } from '@antv/vendor/d3-array';
import { isUnset } from '../utils/helper';
import { column, columnOf } from './utils/helper';
import { createGroups } from './utils/order';
function normalizeBasis(basis) {
if (typeof basis === 'function')
return basis;
const registry = {
min: (I, Y) => min(I, (i) => Y[+i]),
max: (I, Y) => max(I, (i) => Y[+i]),
first: (I, Y) => Y[I[0]],
last: (I, Y) => Y[I[I.length - 1]],
mean: (I, Y) => mean(I, (i) => Y[+i]),
median: (I, Y) => median(I, (i) => Y[+i]),
sum: (I, Y) => sum(I, (i) => Y[+i]),
deviation: (I, Y) => deviation(I, (i) => Y[+i]),
};
return registry[basis] || max;
}
/**
* Group marks into series by specified channels, and then transform
* each series's value, say to transform them relative to some basis
* to apply a moving average.
*/
export const NormalizeY = (options = {}) => {
const { groupBy = 'x', basis = 'max' } = options;
return (I, mark) => {
const { encode, tooltip } = mark;
const { x } = encode, rest = __rest(encode, ["x"]);
// Extract and create new channels starts with y, such as y, y1.
const Yn = Object.entries(rest)
.filter(([k]) => k.startsWith('y'))
.map(([k]) => [k, columnOf(encode, k)[0]]);
const [, Y] = Yn.find(([k]) => k === 'y');
const newYn = Yn.map(([k]) => [k, new Array(I.length)]);
// Group marks into series by specified keys.
const groups = createGroups(groupBy, I, mark);
// Transform y channels for each group based on basis.
const basisFunction = normalizeBasis(basis);
for (const I of groups) {
// Compute basis only base on y.
const basisValue = basisFunction(I, Y);
for (const i of I) {
for (let j = 0; j < Yn.length; j++) {
const [, V] = Yn[j];
const [, newV] = newYn[j];
newV[i] = +V[i] / basisValue;
}
}
}
const specifiedTooltip = isUnset(tooltip) || ((tooltip === null || tooltip === void 0 ? void 0 : tooltip.items) && (tooltip === null || tooltip === void 0 ? void 0 : tooltip.items.length) !== 0);
return [
I,
deepMix({}, mark, Object.assign({ encode: Object.fromEntries(newYn.map(([k, v]) => [k, column(v, columnOf(encode, k)[1])])) }, (!specifiedTooltip &&
encode.y0 && {
tooltip: { items: [{ channel: 'y0' }] },
}))),
];
};
};
NormalizeY.props = {};
//# sourceMappingURL=normalizeY.js.map