UNPKG

@antv/g2

Version:

the Grammar of Graphics in Javascript

126 lines (113 loc) 3.59 kB
import { Vector } from '@antv/coord'; import { group } from 'd3-array'; import { isParallel } from '../utils/coordinate'; import { Mark, MarkComponent as MC, SingleMark, Vector2 } from '../runtime'; import { LineMark } from '../spec'; import { LineShape, LineHV, LineVH, LineHVH, LineTrail, LineSmooth, } from '../shape'; import { MaybeSeries, MaybeGradient } from '../transform'; import { baseGeometryChannels, basePostInference, basePreInference, tooltip1d, tooltipXd, } from './utils'; const shape = { line: LineShape, smooth: LineSmooth, hv: LineHV, vh: LineVH, hvh: LineHVH, trail: LineTrail, }; export type LineOptions = Omit<LineMark, 'type'>; const line: Mark = (index, scale, value, coordinate) => { const { series: S, x: X, y: Y } = value; const { x, y } = scale; // Because x and y channel is not strictly required in Line.props, // it should throw error with empty x or y channels. if (X === undefined || Y === undefined) { throw new Error('Missing encode for x or y channel.'); } // Group data into series. // There is only one series without specified series encode. const series = S ? Array.from(group(index, (i) => S[i]).values()) : [index]; const I = series.map((group) => group[0]).filter((i) => i !== undefined); // A group of data corresponds to one line. const xoffset = (x?.getBandWidth?.() || 0) / 2; const yoffset = (y?.getBandWidth?.() || 0) / 2; const P = Array.from(series, (I) => { return I.map((i) => coordinate.map([+X[i] + xoffset, +Y[i] + yoffset]), ) as Vector2[]; }); return [I, P, series]; }; const parallel: Mark = (index, scale, value, coordinate) => { // Extract all value for position[number] channels. const PV = Object.entries(value) .filter(([key]) => key.startsWith('position')) .map(([, value]) => value); // Because position channel is not strictly required in Line.props, // it should throw error with empty position values. if (PV.length === 0) { throw new Error('Missing encode for position channel.'); } // One data corresponds to one line. const P = Array.from(index, (i) => { // Transform high dimension vector to a list of two-dimension vectors. // [a, b, c] -> [d, e, f, g, h, i] const vector = PV.map((pv) => +pv[i]); const vectors = coordinate.map(vector) as Vector; // Two-dimension vectors are stored in a flat array, so extract them. // [d, e, f, g, h, i] -> [d, e], [f, g], [h, i] const points = []; for (let i = 0; i < vectors.length; i += 2) { points.push([vectors[i], vectors[i + 1]]); } return points; }); return [index, P]; }; /** * Convert value for each channel to line shapes. */ export const Line: MC<LineOptions> = () => { return (index, scale, value, coordinate) => { const mark = isParallel(coordinate) ? parallel : line; return (mark as SingleMark)(index, scale, value, coordinate); }; }; Line.props = { defaultShape: 'line', defaultLabelShape: 'label', composite: false, shape, channels: [ ...baseGeometryChannels({ shapes: Object.keys(shape) }), { name: 'x' }, { name: 'y' }, { name: 'position', independent: true }, { name: 'size' }, { name: 'series', scale: 'band' }, ], preInference: [ ...basePreInference(), // !!!Note This order is very important. { type: MaybeGradient }, { type: MaybeSeries }, ], postInference: [...basePostInference(), ...tooltip1d(), ...tooltipXd()], interaction: { shareTooltip: true, seriesTooltip: true, crosshairs: true, }, };