UNPKG

@antv/f2

Version:

Charts for mobile visualization.

1,331 lines (1,154 loc) 42.2 kB
/* eslint-disable */ // @ts-nocheck // from css-layout var CSS_UNDEFINED; var CSS_DIRECTION_INHERIT = 'inherit'; var CSS_DIRECTION_LTR = 'ltr'; var CSS_DIRECTION_RTL = 'rtl'; var CSS_FLEX_DIRECTION_ROW = 'row'; var CSS_FLEX_DIRECTION_ROW_REVERSE = 'row-reverse'; var CSS_FLEX_DIRECTION_COLUMN = 'column'; var CSS_FLEX_DIRECTION_COLUMN_REVERSE = 'column-reverse'; var CSS_JUSTIFY_FLEX_START = 'flex-start'; var CSS_JUSTIFY_CENTER = 'center'; var CSS_JUSTIFY_FLEX_END = 'flex-end'; var CSS_JUSTIFY_SPACE_BETWEEN = 'space-between'; var CSS_JUSTIFY_SPACE_AROUND = 'space-around'; var CSS_ALIGN_FLEX_START = 'flex-start'; var CSS_ALIGN_CENTER = 'center'; var CSS_ALIGN_FLEX_END = 'flex-end'; var CSS_ALIGN_STRETCH = 'stretch'; var CSS_POSITION_RELATIVE = 'relative'; var CSS_POSITION_ABSOLUTE = 'absolute'; var leading = { row: 'left', 'row-reverse': 'right', column: 'top', 'column-reverse': 'bottom', }; var trailing = { row: 'right', 'row-reverse': 'left', column: 'bottom', 'column-reverse': 'top', }; var pos = { row: 'left', 'row-reverse': 'right', column: 'top', 'column-reverse': 'bottom', }; var dim = { row: 'width', 'row-reverse': 'width', column: 'height', 'column-reverse': 'height', }; // When transpiled to Java / C the node type has layout, children and style // properties. For the JavaScript version this function adds these properties // if they don't already exist. function fillNodes(node) { if (!node.layout || node.isDirty) { node.layout = { width: undefined, height: undefined, top: 0, left: 0, right: 0, bottom: 0, }; } if (!node.style) { node.style = {}; } if (!node.children) { node.children = []; } node.children.forEach(fillNodes); return node; } function isUndefined(value) { return value === undefined; } function isRowDirection(flexDirection) { return ( flexDirection === CSS_FLEX_DIRECTION_ROW || flexDirection === CSS_FLEX_DIRECTION_ROW_REVERSE ); } function isColumnDirection(flexDirection) { return ( flexDirection === CSS_FLEX_DIRECTION_COLUMN || flexDirection === CSS_FLEX_DIRECTION_COLUMN_REVERSE ); } function getLeadingMargin(node, axis) { if (node.style.marginStart !== undefined && isRowDirection(axis)) { return node.style.marginStart; } var value = null; switch (axis) { case 'row': value = node.style.marginLeft; break; case 'row-reverse': value = node.style.marginRight; break; case 'column': value = node.style.marginTop; break; case 'column-reverse': value = node.style.marginBottom; break; } if (value !== undefined) { return value; } if (node.style.margin !== undefined) { return node.style.margin; } return 0; } function getTrailingMargin(node, axis) { if (node.style.marginEnd !== undefined && isRowDirection(axis)) { return node.style.marginEnd; } var value = null; switch (axis) { case 'row': value = node.style.marginRight; break; case 'row-reverse': value = node.style.marginLeft; break; case 'column': value = node.style.marginBottom; break; case 'column-reverse': value = node.style.marginTop; break; } if (value != null) { return value; } if (node.style.margin !== undefined) { return node.style.margin; } return 0; } function getLeadingPadding(node, axis) { if ( node.style.paddingStart !== undefined && node.style.paddingStart >= 0 && isRowDirection(axis) ) { return node.style.paddingStart; } var value = null; switch (axis) { case 'row': value = node.style.paddingLeft; break; case 'row-reverse': value = node.style.paddingRight; break; case 'column': value = node.style.paddingTop; break; case 'column-reverse': value = node.style.paddingBottom; break; } if (value != null && value >= 0) { return value; } if (node.style.padding !== undefined && node.style.padding >= 0) { return node.style.padding; } return 0; } function getTrailingPadding(node, axis) { if (node.style.paddingEnd !== undefined && node.style.paddingEnd >= 0 && isRowDirection(axis)) { return node.style.paddingEnd; } var value = null; switch (axis) { case 'row': value = node.style.paddingRight; break; case 'row-reverse': value = node.style.paddingLeft; break; case 'column': value = node.style.paddingBottom; break; case 'column-reverse': value = node.style.paddingTop; break; } if (value != null && value >= 0) { return value; } if (node.style.padding !== undefined && node.style.padding >= 0) { return node.style.padding; } return 0; } function getLeadingBorder(node, axis) { if ( node.style.borderStartWidth !== undefined && node.style.borderStartWidth >= 0 && isRowDirection(axis) ) { return node.style.borderStartWidth; } var value = null; switch (axis) { case 'row': value = node.style.borderLeftWidth; break; case 'row-reverse': value = node.style.borderRightWidth; break; case 'column': value = node.style.borderTopWidth; break; case 'column-reverse': value = node.style.borderBottomWidth; break; } if (value != null && value >= 0) { return value; } if (node.style.borderWidth !== undefined && node.style.borderWidth >= 0) { return node.style.borderWidth; } return 0; } function getTrailingBorder(node, axis) { if ( node.style.borderEndWidth !== undefined && node.style.borderEndWidth >= 0 && isRowDirection(axis) ) { return node.style.borderEndWidth; } var value = null; switch (axis) { case 'row': value = node.style.borderRightWidth; break; case 'row-reverse': value = node.style.borderLeftWidth; break; case 'column': value = node.style.borderBottomWidth; break; case 'column-reverse': value = node.style.borderTopWidth; break; } if (value != null && value >= 0) { return value; } if (node.style.borderWidth !== undefined && node.style.borderWidth >= 0) { return node.style.borderWidth; } return 0; } function getLeadingPaddingAndBorder(node, axis) { return getLeadingPadding(node, axis) + getLeadingBorder(node, axis); } function getTrailingPaddingAndBorder(node, axis) { return getTrailingPadding(node, axis) + getTrailingBorder(node, axis); } function getBorderAxis(node, axis) { return getLeadingBorder(node, axis) + getTrailingBorder(node, axis); } function getMarginAxis(node, axis) { return getLeadingMargin(node, axis) + getTrailingMargin(node, axis); } function getPaddingAndBorderAxis(node, axis) { return getLeadingPaddingAndBorder(node, axis) + getTrailingPaddingAndBorder(node, axis); } function getJustifyContent(node) { if (node.style.justifyContent) { return node.style.justifyContent; } return 'flex-start'; } function getAlignContent(node) { if (node.style.alignContent) { return node.style.alignContent; } return 'flex-start'; } function getAlignItem(node, child) { if (child.style.alignSelf) { return child.style.alignSelf; } if (node.style.alignItems) { return node.style.alignItems; } return 'stretch'; } function resolveAxis(axis, direction) { if (direction === CSS_DIRECTION_RTL) { if (axis === CSS_FLEX_DIRECTION_ROW) { return CSS_FLEX_DIRECTION_ROW_REVERSE; } else if (axis === CSS_FLEX_DIRECTION_ROW_REVERSE) { return CSS_FLEX_DIRECTION_ROW; } } return axis; } function resolveDirection(node, parentDirection) { var direction; if (node.style.direction) { direction = node.style.direction; } else { direction = CSS_DIRECTION_INHERIT; } if (direction === CSS_DIRECTION_INHERIT) { direction = parentDirection === undefined ? CSS_DIRECTION_LTR : parentDirection; } return direction; } function getFlexDirection(node) { if (node.style.flexDirection) { return node.style.flexDirection; } return CSS_FLEX_DIRECTION_COLUMN; } function getCrossFlexDirection(flexDirection, direction) { if (isColumnDirection(flexDirection)) { return resolveAxis(CSS_FLEX_DIRECTION_ROW, direction); } else { return CSS_FLEX_DIRECTION_COLUMN; } } function getPositionType(node) { if (node.style.position) { return node.style.position; } return 'relative'; } function isFlex(node) { return getPositionType(node) === CSS_POSITION_RELATIVE && node.style.flex > 0; } function isFlexWrap(node) { return node.style.flexWrap === 'wrap'; } function getDimWithMargin(node, axis) { return node.layout[dim[axis]] + getMarginAxis(node, axis); } function isDimDefined(node, axis) { return node.style[dim[axis]] !== undefined && node.style[dim[axis]] >= 0; } function isPosDefined(node, pos) { return node.style[pos] !== undefined; } function isMeasureDefined(node) { return node.style.measure !== undefined; } function getPosition(node, pos) { if (node.style[pos] !== undefined) { return node.style[pos]; } return 0; } function boundAxis(node, axis, value) { var min = { row: node.style.minWidth, 'row-reverse': node.style.minWidth, column: node.style.minHeight, 'column-reverse': node.style.minHeight, }[axis]; var max = { row: node.style.maxWidth, 'row-reverse': node.style.maxWidth, column: node.style.maxHeight, 'column-reverse': node.style.maxHeight, }[axis]; var boundValue = value; if (max !== undefined && max >= 0 && boundValue > max) { boundValue = max; } if (min !== undefined && min >= 0 && boundValue < min) { boundValue = min; } return boundValue; } function fmaxf(a, b) { if (a > b) { return a; } return b; } // When the user specifically sets a value for width or height function setDimensionFromStyle(node, axis) { // The parent already computed us a width or height. We just skip it if (node.layout[dim[axis]] !== undefined) { return; } // We only run if there's a width or height defined if (!isDimDefined(node, axis)) { return; } // The dimensions can never be smaller than the padding and border node.layout[dim[axis]] = fmaxf( boundAxis(node, axis, node.style[dim[axis]]), getPaddingAndBorderAxis(node, axis) ); } function setTrailingPosition(node, child, axis) { child.layout[trailing[axis]] = node.layout[dim[axis]] - child.layout[dim[axis]] - child.layout[pos[axis]]; } // If both left and right are defined, then use left. Otherwise return // +left or -right depending on which is defined. function getRelativePosition(node, axis) { if (node.style[leading[axis]] !== undefined) { return getPosition(node, leading[axis]); } return -getPosition(node, trailing[axis]); } function layoutNodeImpl(node, parentMaxWidth, /*css_direction_t*/ parentDirection) { var /*css_direction_t*/ direction = resolveDirection(node, parentDirection); var /*(c)!css_flex_direction_t*/ /*(java)!int*/ mainAxis = resolveAxis( getFlexDirection(node), direction ); var /*(c)!css_flex_direction_t*/ /*(java)!int*/ crossAxis = getCrossFlexDirection( mainAxis, direction ); var /*(c)!css_flex_direction_t*/ /*(java)!int*/ resolvedRowAxis = resolveAxis( CSS_FLEX_DIRECTION_ROW, direction ); // Handle width and height style attributes setDimensionFromStyle(node, mainAxis); setDimensionFromStyle(node, crossAxis); // Set the resolved resolution in the node's layout node.layout.direction = direction; // The position is set by the parent, but we need to complete it with a // delta composed of the margin and left/top/right/bottom node.layout[leading[mainAxis]] += getLeadingMargin(node, mainAxis) + getRelativePosition(node, mainAxis); node.layout[trailing[mainAxis]] += getTrailingMargin(node, mainAxis) + getRelativePosition(node, mainAxis); node.layout[leading[crossAxis]] += getLeadingMargin(node, crossAxis) + getRelativePosition(node, crossAxis); node.layout[trailing[crossAxis]] += getTrailingMargin(node, crossAxis) + getRelativePosition(node, crossAxis); // Inline immutable values from the target node to avoid excessive method // invocations during the layout calculation. var /*int*/ childCount = node.children.length; var /*float*/ paddingAndBorderAxisResolvedRow = getPaddingAndBorderAxis(node, resolvedRowAxis); if (isMeasureDefined(node)) { var /*bool*/ isResolvedRowDimDefined = !isUndefined(node.layout[dim[resolvedRowAxis]]); var /*float*/ width = CSS_UNDEFINED; if (isDimDefined(node, resolvedRowAxis)) { width = node.style.width; } else if (isResolvedRowDimDefined) { width = node.layout[dim[resolvedRowAxis]]; } else { width = parentMaxWidth - getMarginAxis(node, resolvedRowAxis); } width -= paddingAndBorderAxisResolvedRow; // We only need to give a dimension for the text if we haven't got any // for it computed yet. It can either be from the style attribute or because // the element is flexible. var /*bool*/ isRowUndefined = !isDimDefined(node, resolvedRowAxis) && !isResolvedRowDimDefined; var /*bool*/ isColumnUndefined = !isDimDefined(node, CSS_FLEX_DIRECTION_COLUMN) && isUndefined(node.layout[dim[CSS_FLEX_DIRECTION_COLUMN]]); // Let's not measure the text if we already know both dimensions if (isRowUndefined || isColumnUndefined) { var /*css_dim_t*/ measureDim = node.style.measure( /*(c)!node->context,*/ /*(java)!layoutContext.measureOutput,*/ width ); if (isRowUndefined) { node.layout.width = measureDim.width + paddingAndBorderAxisResolvedRow; } if (isColumnUndefined) { node.layout.height = measureDim.height + getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN); } } if (childCount === 0) { return; } } var /*bool*/ isNodeFlexWrap = isFlexWrap(node); var /*css_justify_t*/ justifyContent = getJustifyContent(node); var /*float*/ leadingPaddingAndBorderMain = getLeadingPaddingAndBorder(node, mainAxis); var /*float*/ leadingPaddingAndBorderCross = getLeadingPaddingAndBorder(node, crossAxis); var /*float*/ paddingAndBorderAxisMain = getPaddingAndBorderAxis(node, mainAxis); var /*float*/ paddingAndBorderAxisCross = getPaddingAndBorderAxis(node, crossAxis); var /*bool*/ isMainDimDefined = !isUndefined(node.layout[dim[mainAxis]]); var /*bool*/ isCrossDimDefined = !isUndefined(node.layout[dim[crossAxis]]); var /*bool*/ isMainRowDirection = isRowDirection(mainAxis); var /*int*/ i; var /*int*/ ii; var /*css_node_t**/ child; var /*(c)!css_flex_direction_t*/ /*(java)!int*/ axis; var /*css_node_t**/ firstAbsoluteChild = null; var /*css_node_t**/ currentAbsoluteChild = null; var /*float*/ definedMainDim = CSS_UNDEFINED; if (isMainDimDefined) { definedMainDim = node.layout[dim[mainAxis]] - paddingAndBorderAxisMain; } // We want to execute the next two loops one per line with flex-wrap var /*int*/ startLine = 0; var /*int*/ endLine = 0; // var/*int*/ nextOffset = 0; var /*int*/ alreadyComputedNextLayout = 0; // We aggregate the total dimensions of the container in those two variables var /*float*/ linesCrossDim = 0; var /*float*/ linesMainDim = 0; var /*int*/ linesCount = 0; while (endLine < childCount) { // <Loop A> Layout non flexible children and count children by type // mainContentDim is accumulation of the dimensions and margin of all the // non flexible children. This will be used in order to either set the // dimensions of the node if none already exist, or to compute the // remaining space left for the flexible children. var /*float*/ mainContentDim = 0; // There are three kind of children, non flexible, flexible and absolute. // We need to know how many there are in order to distribute the space. var /*int*/ flexibleChildrenCount = 0; var /*float*/ totalFlexible = 0; var /*int*/ nonFlexibleChildrenCount = 0; // Use the line loop to position children in the main axis for as long // as they are using a simple stacking behaviour. Children that are // immediately stacked in the initial loop will not be touched again // in <Loop C>. var /*bool*/ isSimpleStackMain = (isMainDimDefined && justifyContent === CSS_JUSTIFY_FLEX_START) || (!isMainDimDefined && justifyContent !== CSS_JUSTIFY_CENTER); var /*int*/ firstComplexMain = isSimpleStackMain ? childCount : startLine; // Use the initial line loop to position children in the cross axis for // as long as they are relatively positioned with alignment STRETCH or // FLEX_START. Children that are immediately stacked in the initial loop // will not be touched again in <Loop D>. var /*bool*/ isSimpleStackCross = true; var /*int*/ firstComplexCross = childCount; var /*css_node_t**/ firstFlexChild = null; var /*css_node_t**/ currentFlexChild = null; var /*float*/ mainDim = leadingPaddingAndBorderMain; var /*float*/ crossDim = 0; var /*float*/ maxWidth; for (i = startLine; i < childCount; ++i) { child = node.children[i]; child.lineIndex = linesCount; child.nextAbsoluteChild = null; child.nextFlexChild = null; var /*css_align_t*/ alignItem = getAlignItem(node, child); // Pre-fill cross axis dimensions when the child is using stretch before // we call the recursive layout pass if ( alignItem === CSS_ALIGN_STRETCH && getPositionType(child) === CSS_POSITION_RELATIVE && isCrossDimDefined && !isDimDefined(child, crossAxis) ) { child.layout[dim[crossAxis]] = fmaxf( boundAxis( child, crossAxis, node.layout[dim[crossAxis]] - paddingAndBorderAxisCross - getMarginAxis(child, crossAxis) ), // You never want to go smaller than padding getPaddingAndBorderAxis(child, crossAxis) ); } else if (getPositionType(child) === CSS_POSITION_ABSOLUTE) { // Store a private linked list of absolutely positioned children // so that we can efficiently traverse them later. if (firstAbsoluteChild === null) { firstAbsoluteChild = child; } if (currentAbsoluteChild !== null) { currentAbsoluteChild.nextAbsoluteChild = child; } currentAbsoluteChild = child; // Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both // left and right or top and bottom). for (ii = 0; ii < 2; ii++) { axis = ii !== 0 ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN; if ( !isUndefined(node.layout[dim[axis]]) && !isDimDefined(child, axis) && isPosDefined(child, leading[axis]) && isPosDefined(child, trailing[axis]) ) { child.layout[dim[axis]] = fmaxf( boundAxis( child, axis, node.layout[dim[axis]] - getPaddingAndBorderAxis(node, axis) - getMarginAxis(child, axis) - getPosition(child, leading[axis]) - getPosition(child, trailing[axis]) ), // You never want to go smaller than padding getPaddingAndBorderAxis(child, axis) ); } } } var /*float*/ nextContentDim = 0; // It only makes sense to consider a child flexible if we have a computed // dimension for the node. if (isMainDimDefined && isFlex(child)) { flexibleChildrenCount++; totalFlexible += child.style.flex; // Store a private linked list of flexible children so that we can // efficiently traverse them later. if (firstFlexChild === null) { firstFlexChild = child; } if (currentFlexChild !== null) { currentFlexChild.nextFlexChild = child; } currentFlexChild = child; // Even if we don't know its exact size yet, we already know the padding, // border and margin. We'll use this partial information, which represents // the smallest possible size for the child, to compute the remaining // available space. nextContentDim = getPaddingAndBorderAxis(child, mainAxis) + getMarginAxis(child, mainAxis); } else { maxWidth = CSS_UNDEFINED; if (!isMainRowDirection) { if (isDimDefined(node, resolvedRowAxis)) { maxWidth = node.layout[dim[resolvedRowAxis]] - paddingAndBorderAxisResolvedRow; } else { maxWidth = parentMaxWidth - getMarginAxis(node, resolvedRowAxis) - paddingAndBorderAxisResolvedRow; } } // This is the main recursive call. We layout non flexible children. if (alreadyComputedNextLayout === 0) { layoutNode(/*(java)!layoutContext, */ child, maxWidth, direction); } // Absolute positioned elements do not take part of the layout, so we // don't use them to compute mainContentDim if (getPositionType(child) === CSS_POSITION_RELATIVE) { nonFlexibleChildrenCount++; // At this point we know the final size and margin of the element. nextContentDim = getDimWithMargin(child, mainAxis); } } // The element we are about to add would make us go to the next line if ( isNodeFlexWrap && isMainDimDefined && mainContentDim + nextContentDim > definedMainDim && // If there's only one element, then it's bigger than the content // and needs its own line i !== startLine ) { nonFlexibleChildrenCount--; alreadyComputedNextLayout = 1; break; } // Disable simple stacking in the main axis for the current line as // we found a non-trivial child. The remaining children will be laid out // in <Loop C>. if ( isSimpleStackMain && (getPositionType(child) !== CSS_POSITION_RELATIVE || isFlex(child)) ) { isSimpleStackMain = false; firstComplexMain = i; } // Disable simple stacking in the cross axis for the current line as // we found a non-trivial child. The remaining children will be laid out // in <Loop D>. if ( isSimpleStackCross && (getPositionType(child) !== CSS_POSITION_RELATIVE || (alignItem !== CSS_ALIGN_STRETCH && alignItem !== CSS_ALIGN_FLEX_START) || isUndefined(child.layout[dim[crossAxis]])) ) { isSimpleStackCross = false; firstComplexCross = i; } if (isSimpleStackMain) { child.layout[pos[mainAxis]] += mainDim; if (isMainDimDefined) { setTrailingPosition(node, child, mainAxis); } mainDim += getDimWithMargin(child, mainAxis); crossDim = fmaxf(crossDim, boundAxis(child, crossAxis, getDimWithMargin(child, crossAxis))); } if (isSimpleStackCross) { child.layout[pos[crossAxis]] += linesCrossDim + leadingPaddingAndBorderCross; if (isCrossDimDefined) { setTrailingPosition(node, child, crossAxis); } } alreadyComputedNextLayout = 0; mainContentDim += nextContentDim; endLine = i + 1; } // <Loop B> Layout flexible children and allocate empty space // In order to position the elements in the main axis, we have two // controls. The space between the beginning and the first element // and the space between each two elements. var /*float*/ leadingMainDim = 0; var /*float*/ betweenMainDim = 0; // The remaining available space that needs to be allocated var /*float*/ remainingMainDim = 0; if (isMainDimDefined) { remainingMainDim = definedMainDim - mainContentDim; } else { remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim; } // If there are flexible children in the mix, they are going to fill the // remaining space if (flexibleChildrenCount !== 0) { var /*float*/ flexibleMainDim = remainingMainDim / totalFlexible; var /*float*/ baseMainDim; var /*float*/ boundMainDim; // If the flex share of remaining space doesn't meet min/max bounds, // remove this child from flex calculations. currentFlexChild = firstFlexChild; while (currentFlexChild !== null) { baseMainDim = flexibleMainDim * currentFlexChild.style.flex + getPaddingAndBorderAxis(currentFlexChild, mainAxis); boundMainDim = boundAxis(currentFlexChild, mainAxis, baseMainDim); if (baseMainDim !== boundMainDim) { remainingMainDim -= boundMainDim; totalFlexible -= currentFlexChild.style.flex; } currentFlexChild = currentFlexChild.nextFlexChild; } flexibleMainDim = remainingMainDim / totalFlexible; // The non flexible children can overflow the container, in this case // we should just assume that there is no space available. if (flexibleMainDim < 0) { flexibleMainDim = 0; } currentFlexChild = firstFlexChild; while (currentFlexChild !== null) { // At this point we know the final size of the element in the main // dimension currentFlexChild.layout[dim[mainAxis]] = boundAxis( currentFlexChild, mainAxis, flexibleMainDim * currentFlexChild.style.flex + getPaddingAndBorderAxis(currentFlexChild, mainAxis) ); maxWidth = CSS_UNDEFINED; if (isDimDefined(node, resolvedRowAxis)) { maxWidth = node.layout[dim[resolvedRowAxis]] - paddingAndBorderAxisResolvedRow; } else if (!isMainRowDirection) { maxWidth = parentMaxWidth - getMarginAxis(node, resolvedRowAxis) - paddingAndBorderAxisResolvedRow; } // And we recursively call the layout algorithm for this child layoutNode(/*(java)!layoutContext, */ currentFlexChild, maxWidth, direction); child = currentFlexChild; currentFlexChild = currentFlexChild.nextFlexChild; child.nextFlexChild = null; } // We use justifyContent to figure out how to allocate the remaining // space available } else if (justifyContent !== CSS_JUSTIFY_FLEX_START) { if (justifyContent === CSS_JUSTIFY_CENTER) { leadingMainDim = remainingMainDim / 2; } else if (justifyContent === CSS_JUSTIFY_FLEX_END) { leadingMainDim = remainingMainDim; } else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) { remainingMainDim = fmaxf(remainingMainDim, 0); if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 !== 0) { betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount - 1); } else { betweenMainDim = 0; } } else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) { // Space on the edges is half of the space between elements betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount); leadingMainDim = betweenMainDim / 2; } } // <Loop C> Position elements in the main axis and compute dimensions // At this point, all the children have their dimensions set. We need to // find their position. In order to do that, we accumulate data in // variables that are also useful to compute the total dimensions of the // container! mainDim += leadingMainDim; for (i = firstComplexMain; i < endLine; ++i) { child = node.children[i]; if ( getPositionType(child) === CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[mainAxis]) ) { // In case the child is position absolute and has left/top being // defined, we override the position to whatever the user said // (and margin/border). child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) + getLeadingBorder(node, mainAxis) + getLeadingMargin(child, mainAxis); } else { // If the child is position absolute (without top/left) or relative, // we put it at the current accumulated offset. child.layout[pos[mainAxis]] += mainDim; // Define the trailing position accordingly. if (isMainDimDefined) { setTrailingPosition(node, child, mainAxis); } // Now that we placed the element, we need to update the variables // We only need to do that for relative elements. Absolute elements // do not take part in that phase. if (getPositionType(child) === CSS_POSITION_RELATIVE) { // The main dimension is the sum of all the elements dimension plus // the spacing. mainDim += betweenMainDim + getDimWithMargin(child, mainAxis); // The cross dimension is the max of the elements dimension since there // can only be one element in that cross dimension. crossDim = fmaxf( crossDim, boundAxis(child, crossAxis, getDimWithMargin(child, crossAxis)) ); } } } var /*float*/ containerCrossAxis = node.layout[dim[crossAxis]]; if (!isCrossDimDefined) { containerCrossAxis = fmaxf( // For the cross dim, we add both sides at the end because the value // is aggregate via a max function. Intermediate negative values // can mess this computation otherwise boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross), paddingAndBorderAxisCross ); } // <Loop D> Position elements in the cross axis for (i = firstComplexCross; i < endLine; ++i) { child = node.children[i]; if ( getPositionType(child) === CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[crossAxis]) ) { // In case the child is absolutely positionned and has a // top/left/bottom/right being set, we override all the previously // computed positions to set it correctly. child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) + getLeadingBorder(node, crossAxis) + getLeadingMargin(child, crossAxis); } else { var /*float*/ leadingCrossDim = leadingPaddingAndBorderCross; // For a relative children, we're either using alignItems (parent) or // alignSelf (child) in order to determine the position in the cross axis if (getPositionType(child) === CSS_POSITION_RELATIVE) { // This variable is intentionally re-defined as the code is transpiled to a block scope language var /*css_align_t*/ alignItem = getAlignItem(node, child); if (alignItem === CSS_ALIGN_STRETCH) { // You can only stretch if the dimension has not already been set // previously. if (isUndefined(child.layout[dim[crossAxis]])) { child.layout[dim[crossAxis]] = fmaxf( boundAxis( child, crossAxis, containerCrossAxis - paddingAndBorderAxisCross - getMarginAxis(child, crossAxis) ), // You never want to go smaller than padding getPaddingAndBorderAxis(child, crossAxis) ); } } else if (alignItem !== CSS_ALIGN_FLEX_START) { // The remaining space between the parent dimensions+padding and child // dimensions+margin. var /*float*/ remainingCrossDim = containerCrossAxis - paddingAndBorderAxisCross - getDimWithMargin(child, crossAxis); if (alignItem === CSS_ALIGN_CENTER) { leadingCrossDim += remainingCrossDim / 2; } else { // CSS_ALIGN_FLEX_END leadingCrossDim += remainingCrossDim; } } } // And we apply the position child.layout[pos[crossAxis]] += linesCrossDim + leadingCrossDim; // Define the trailing position accordingly. if (isCrossDimDefined) { setTrailingPosition(node, child, crossAxis); } } } linesCrossDim += crossDim; linesMainDim = fmaxf(linesMainDim, mainDim); linesCount += 1; startLine = endLine; } // <Loop E> // // Note(prenaux): More than one line, we need to layout the crossAxis // according to alignContent. // // Note that we could probably remove <Loop D> and handle the one line case // here too, but for the moment this is safer since it won't interfere with // previously working code. // // See specs: // http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#layout-algorithm // section 9.4 // if (linesCount > 1 && isCrossDimDefined) { var /*float*/ nodeCrossAxisInnerSize = node.layout[dim[crossAxis]] - paddingAndBorderAxisCross; var /*float*/ remainingAlignContentDim = nodeCrossAxisInnerSize - linesCrossDim; var /*float*/ crossDimLead = 0; var /*float*/ currentLead = leadingPaddingAndBorderCross; var /*css_align_t*/ alignContent = getAlignContent(node); if (alignContent === CSS_ALIGN_FLEX_END) { currentLead += remainingAlignContentDim; } else if (alignContent === CSS_ALIGN_CENTER) { currentLead += remainingAlignContentDim / 2; } else if (alignContent === CSS_ALIGN_STRETCH) { if (nodeCrossAxisInnerSize > linesCrossDim) { crossDimLead = remainingAlignContentDim / linesCount; } } var /*int*/ endIndex = 0; for (i = 0; i < linesCount; ++i) { var /*int*/ startIndex = endIndex; // compute the line's height and find the endIndex var /*float*/ lineHeight = 0; for (ii = startIndex; ii < childCount; ++ii) { child = node.children[ii]; if (getPositionType(child) !== CSS_POSITION_RELATIVE) { continue; } if (child.lineIndex !== i) { break; } if (!isUndefined(child.layout[dim[crossAxis]])) { lineHeight = fmaxf( lineHeight, child.layout[dim[crossAxis]] + getMarginAxis(child, crossAxis) ); } } endIndex = ii; lineHeight += crossDimLead; for (ii = startIndex; ii < endIndex; ++ii) { child = node.children[ii]; if (getPositionType(child) !== CSS_POSITION_RELATIVE) { continue; } var /*css_align_t*/ alignContentAlignItem = getAlignItem(node, child); if (alignContentAlignItem === CSS_ALIGN_FLEX_START) { child.layout[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis); } else if (alignContentAlignItem === CSS_ALIGN_FLEX_END) { child.layout[pos[crossAxis]] = currentLead + lineHeight - getTrailingMargin(child, crossAxis) - child.layout[dim[crossAxis]]; } else if (alignContentAlignItem === CSS_ALIGN_CENTER) { var /*float*/ childHeight = child.layout[dim[crossAxis]]; child.layout[pos[crossAxis]] = currentLead + (lineHeight - childHeight) / 2; } else if (alignContentAlignItem === CSS_ALIGN_STRETCH) { child.layout[pos[crossAxis]] = currentLead + getLeadingMargin(child, crossAxis); // TODO(prenaux): Correctly set the height of items with undefined // (auto) crossAxis dimension. } } currentLead += lineHeight; } } var /*bool*/ needsMainTrailingPos = false; var /*bool*/ needsCrossTrailingPos = false; // If the user didn't specify a width or height, and it has not been set // by the container, then we set it via the children. if (!isMainDimDefined) { node.layout[dim[mainAxis]] = fmaxf( // We're missing the last padding at this point to get the final // dimension boundAxis(node, mainAxis, linesMainDim + getTrailingPaddingAndBorder(node, mainAxis)), // We can never assign a width smaller than the padding and borders paddingAndBorderAxisMain ); if ( mainAxis === CSS_FLEX_DIRECTION_ROW_REVERSE || mainAxis === CSS_FLEX_DIRECTION_COLUMN_REVERSE ) { needsMainTrailingPos = true; } } if (!isCrossDimDefined) { node.layout[dim[crossAxis]] = fmaxf( // For the cross dim, we add both sides at the end because the value // is aggregate via a max function. Intermediate negative values // can mess this computation otherwise boundAxis(node, crossAxis, linesCrossDim + paddingAndBorderAxisCross), paddingAndBorderAxisCross ); if ( crossAxis === CSS_FLEX_DIRECTION_ROW_REVERSE || crossAxis === CSS_FLEX_DIRECTION_COLUMN_REVERSE ) { needsCrossTrailingPos = true; } } // <Loop F> Set trailing position if necessary if (needsMainTrailingPos || needsCrossTrailingPos) { for (i = 0; i < childCount; ++i) { child = node.children[i]; if (needsMainTrailingPos) { setTrailingPosition(node, child, mainAxis); } if (needsCrossTrailingPos) { setTrailingPosition(node, child, crossAxis); } } } // <Loop G> Calculate dimensions for absolutely positioned elements currentAbsoluteChild = firstAbsoluteChild; while (currentAbsoluteChild !== null) { // Pre-fill dimensions when using absolute position and both offsets for // the axis are defined (either both left and right or top and bottom). for (ii = 0; ii < 2; ii++) { axis = ii !== 0 ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN; if ( !isUndefined(node.layout[dim[axis]]) && !isDimDefined(currentAbsoluteChild, axis) && isPosDefined(currentAbsoluteChild, leading[axis]) && isPosDefined(currentAbsoluteChild, trailing[axis]) ) { currentAbsoluteChild.layout[dim[axis]] = fmaxf( boundAxis( currentAbsoluteChild, axis, node.layout[dim[axis]] - getBorderAxis(node, axis) - getMarginAxis(currentAbsoluteChild, axis) - getPosition(currentAbsoluteChild, leading[axis]) - getPosition(currentAbsoluteChild, trailing[axis]) ), // You never want to go smaller than padding getPaddingAndBorderAxis(currentAbsoluteChild, axis) ); } if ( isPosDefined(currentAbsoluteChild, trailing[axis]) && !isPosDefined(currentAbsoluteChild, leading[axis]) ) { currentAbsoluteChild.layout[leading[axis]] = node.layout[dim[axis]] - currentAbsoluteChild.layout[dim[axis]] - getPosition(currentAbsoluteChild, trailing[axis]); } } child = currentAbsoluteChild; currentAbsoluteChild = currentAbsoluteChild.nextAbsoluteChild; child.nextAbsoluteChild = null; } } // 在外层做的margin补丁 function saveMargin(node) { const { style } = node; const margin = {}; [ 'marginTop', 'marginRight', 'marginBottom', 'marginLeft', // 只支持marginLeft ].forEach((key) => { // 只处理百分号 const value = style[key]; if (value && /^-?\d+%$/.test(value)) { margin[key] = value; style[key] = 0; } }); node.margin = margin; } function percent2Num(value) { const percent = Number(value.substr(0, value.length - 1)); return percent / 100; } function layoutMargin(node) { const { margin, layout } = node; Object.keys(margin).forEach((key) => { const percent = percent2Num(margin[key]); if ((key === 'marginLeft' || key === 'marginRight') && layout.width) { layout.left += layout.width * percent; } else if ((key === 'marginTop' || key === 'marginBottom') && layout.height) { layout.top += layout.height * percent; } }); } function layoutNode(node, parentMaxWidth, parentDirection) { node.shouldUpdate = true; // hack saveMargin(node); var direction = node.style.direction || CSS_DIRECTION_LTR; var skipLayout = !node.isDirty && node.lastLayout && node.lastLayout.requestedHeight === node.layout.height && node.lastLayout.requestedWidth === node.layout.width && node.lastLayout.parentMaxWidth === parentMaxWidth && node.lastLayout.direction === direction; if (skipLayout) { node.layout.width = node.lastLayout.width; node.layout.height = node.lastLayout.height; node.layout.top = node.lastLayout.top; node.layout.left = node.lastLayout.left; } else { if (!node.lastLayout) { node.lastLayout = {}; } node.lastLayout.requestedWidth = node.layout.width; node.lastLayout.requestedHeight = node.layout.height; node.lastLayout.parentMaxWidth = parentMaxWidth; node.lastLayout.direction = direction; // Reset child layouts node.children.forEach(function (child) { child.layout.width = undefined; child.layout.height = undefined; child.layout.top = 0; child.layout.left = 0; }); layoutNodeImpl(node, parentMaxWidth, parentDirection); node.lastLayout.width = node.layout.width; node.lastLayout.height = node.layout.height; node.lastLayout.top = node.layout.top; node.lastLayout.left = node.layout.left; } // hack layoutMargin(node); } /* eslint-enable */ function computeLayout(node) { if (!node) return node; const { style, children } = node; if (style) { fillNodes(node); layoutNode(node, null, null); return node; } if (children && children.length) { for (let i = 0, len = children.length; i < len; i++) { computeLayout(children[i]); } } return node; } export default computeLayout;