@antv/coord
Version:
Toolkit for mapping elements of sets into geometric objects.
67 lines • 2.58 kB
JavaScript
var __read = (this && this.__read) || function (o, n) {
var m = typeof Symbol === "function" && o[Symbol.iterator];
if (!m) return o;
var i = m.call(o), r, ar = [], e;
try {
while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);
}
catch (error) { e = { error: error }; }
finally {
try {
if (r && !r.done && (m = i["return"])) m.call(i);
}
finally { if (e) throw e.error; }
}
return ar;
};
/* eslint-disable @typescript-eslint/no-unused-vars */
import { Linear } from '@antv/scale';
import { adjustAngle } from '../utils';
/**
* Maps normalized value to normalized polar coordinate at the center of the bounding box.
* It is used for Nightingale Rose Diagram.
* @param params [x0, x1, y0, y1]
* @param x x of the the bounding box of coordinate
* @param y y of the the bounding box of coordinate
* @param width width of the the bounding box of coordinate
* @param height height of the the bounding box of coordinate
* @returns transformer
*/
export var polar = function (params, x, y, width, height) {
var _a = __read(params, 4), startAngle = _a[0], endAngle = _a[1], innerRadius = _a[2], outerRadius = _a[3];
var radius = new Linear({
range: [innerRadius, outerRadius],
});
var angle = new Linear({
range: [startAngle, endAngle],
});
var aspect = height / width;
var sx = aspect > 1 ? 1 : aspect;
var sy = aspect > 1 ? 1 / aspect : 1;
return {
transform: function (vector) {
var _a = __read(vector, 2), v1 = _a[0], v2 = _a[1];
var theta = angle.map(v1);
var r = radius.map(v2);
// 根据长宽比调整,使得极坐标系内切外接矩形
var x = r * Math.cos(theta) * sx;
var y = r * Math.sin(theta) * sy;
// 将坐标的原点移动到外接矩形的中心,并且将长度设置为一半
var dx = x * 0.5 + 0.5;
var dy = y * 0.5 + 0.5;
return [dx, dy];
},
untransform: function (vector) {
var _a = __read(vector, 2), dx = _a[0], dy = _a[1];
var x = ((dx - 0.5) * 2) / sx;
var y = ((dy - 0.5) * 2) / sy;
var r = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
var t = Math.atan2(y, x);
var theta = adjustAngle(t, startAngle, endAngle);
var v1 = angle.invert(theta);
var v2 = radius.invert(r);
return [v1, v2];
},
};
};
//# sourceMappingURL=polar.js.map