UNPKG

@anthropic-ai/sdk

Version:

The official TypeScript library for the Anthropic API

647 lines (577 loc) 20.6 kB
// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. import { APIResource } from "../../../resource.js"; import { APIPromise } from "../../../core.js"; import * as Core from "../../../core.js"; import * as PromptCachingMessagesAPI from "./messages.js"; import * as MessagesAPI from "../../messages.js"; import { Stream } from "../../../streaming.js"; import { PromptCachingBetaMessageStream } from "../../../lib/PromptCachingBetaMessageStream.js"; export class Messages extends APIResource { /** * Create a Message. * * Send a structured list of input messages with text and/or image content, and the * model will generate the next message in the conversation. * * The Messages API can be used for either single queries or stateless multi-turn * conversations. */ create( body: MessageCreateParamsNonStreaming, options?: Core.RequestOptions, ): APIPromise<PromptCachingBetaMessage>; create( body: MessageCreateParamsStreaming, options?: Core.RequestOptions, ): APIPromise<Stream<RawPromptCachingBetaMessageStreamEvent>>; create( body: MessageCreateParamsBase, options?: Core.RequestOptions, ): APIPromise<Stream<RawPromptCachingBetaMessageStreamEvent> | PromptCachingBetaMessage>; create( body: MessageCreateParams, options?: Core.RequestOptions, ): APIPromise<PromptCachingBetaMessage> | APIPromise<Stream<RawPromptCachingBetaMessageStreamEvent>> { return this._client.post('/v1/messages?beta=prompt_caching', { body, timeout: (this._client as any)._options.timeout ?? 600000, ...options, headers: { 'anthropic-beta': 'prompt-caching-2024-07-31', ...options?.headers }, stream: body.stream ?? false, }) as APIPromise<PromptCachingBetaMessage> | APIPromise<Stream<RawPromptCachingBetaMessageStreamEvent>>; } /** * Create a Message stream */ stream(body: MessageStreamParams, options?: Core.RequestOptions): PromptCachingBetaMessageStream { return PromptCachingBetaMessageStream.createMessage(this, body, options); } } export type MessageStreamParams = MessageCreateParamsBase; export interface PromptCachingBetaCacheControlEphemeral { type: 'ephemeral'; } export interface PromptCachingBetaImageBlockParam { source: PromptCachingBetaImageBlockParam.Source; type: 'image'; cache_control?: PromptCachingBetaCacheControlEphemeral | null; } export namespace PromptCachingBetaImageBlockParam { export interface Source { data: string; media_type: 'image/jpeg' | 'image/png' | 'image/gif' | 'image/webp'; type: 'base64'; } } export interface PromptCachingBetaMessage { /** * Unique object identifier. * * The format and length of IDs may change over time. */ id: string; /** * Content generated by the model. * * This is an array of content blocks, each of which has a `type` that determines * its shape. * * Example: * * ```json * [{ "type": "text", "text": "Hi, I'm Claude." }] * ``` * * If the request input `messages` ended with an `assistant` turn, then the * response `content` will continue directly from that last turn. You can use this * to constrain the model's output. * * For example, if the input `messages` were: * * ```json * [ * { * "role": "user", * "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" * }, * { "role": "assistant", "content": "The best answer is (" } * ] * ``` * * Then the response `content` might be: * * ```json * [{ "type": "text", "text": "B)" }] * ``` */ content: Array<MessagesAPI.ContentBlock>; /** * The model that will complete your prompt.\n\nSee * [models](https://docs.anthropic.com/en/docs/models-overview) for additional * details and options. */ model: MessagesAPI.Model; /** * Conversational role of the generated message. * * This will always be `"assistant"`. */ role: 'assistant'; /** * The reason that we stopped. * * This may be one the following values: * * - `"end_turn"`: the model reached a natural stopping point * - `"max_tokens"`: we exceeded the requested `max_tokens` or the model's maximum * - `"stop_sequence"`: one of your provided custom `stop_sequences` was generated * - `"tool_use"`: the model invoked one or more tools * * In non-streaming mode this value is always non-null. In streaming mode, it is * null in the `message_start` event and non-null otherwise. */ stop_reason: 'end_turn' | 'max_tokens' | 'stop_sequence' | 'tool_use' | null; /** * Which custom stop sequence was generated, if any. * * This value will be a non-null string if one of your custom stop sequences was * generated. */ stop_sequence: string | null; /** * Object type. * * For Messages, this is always `"message"`. */ type: 'message'; /** * Billing and rate-limit usage. * * Anthropic's API bills and rate-limits by token counts, as tokens represent the * underlying cost to our systems. * * Under the hood, the API transforms requests into a format suitable for the * model. The model's output then goes through a parsing stage before becoming an * API response. As a result, the token counts in `usage` will not match one-to-one * with the exact visible content of an API request or response. * * For example, `output_tokens` will be non-zero, even for an empty string response * from Claude. */ usage: PromptCachingBetaUsage; } export interface PromptCachingBetaMessageParam { content: | string | Array< | PromptCachingBetaTextBlockParam | PromptCachingBetaImageBlockParam | PromptCachingBetaToolUseBlockParam | PromptCachingBetaToolResultBlockParam >; role: 'user' | 'assistant'; } export interface PromptCachingBetaTextBlockParam { text: string; type: 'text'; cache_control?: PromptCachingBetaCacheControlEphemeral | null; } export interface PromptCachingBetaTool { /** * [JSON schema](https://json-schema.org/) for this tool's input. * * This defines the shape of the `input` that your tool accepts and that the model * will produce. */ input_schema: PromptCachingBetaTool.InputSchema; name: string; cache_control?: PromptCachingBetaCacheControlEphemeral | null; /** * Description of what this tool does. * * Tool descriptions should be as detailed as possible. The more information that * the model has about what the tool is and how to use it, the better it will * perform. You can use natural language descriptions to reinforce important * aspects of the tool input JSON schema. */ description?: string; } export namespace PromptCachingBetaTool { /** * [JSON schema](https://json-schema.org/) for this tool's input. * * This defines the shape of the `input` that your tool accepts and that the model * will produce. */ export interface InputSchema { type: 'object'; properties?: unknown | null; [k: string]: unknown; } } export interface PromptCachingBetaToolResultBlockParam { tool_use_id: string; type: 'tool_result'; cache_control?: PromptCachingBetaCacheControlEphemeral | null; content?: string | Array<PromptCachingBetaTextBlockParam | PromptCachingBetaImageBlockParam>; is_error?: boolean; } export interface PromptCachingBetaToolUseBlockParam { id: string; input: unknown; name: string; type: 'tool_use'; cache_control?: PromptCachingBetaCacheControlEphemeral | null; } export interface PromptCachingBetaUsage { /** * The number of input tokens used to create the cache entry. */ cache_creation_input_tokens: number | null; /** * The number of input tokens read from the cache. */ cache_read_input_tokens: number | null; /** * The number of input tokens which were used. */ input_tokens: number; /** * The number of output tokens which were used. */ output_tokens: number; } export interface RawPromptCachingBetaMessageStartEvent { message: PromptCachingBetaMessage; type: 'message_start'; } export type RawPromptCachingBetaMessageStreamEvent = | RawPromptCachingBetaMessageStartEvent | MessagesAPI.RawMessageDeltaEvent | MessagesAPI.RawMessageStopEvent | MessagesAPI.RawContentBlockStartEvent | MessagesAPI.RawContentBlockDeltaEvent | MessagesAPI.RawContentBlockStopEvent; export type MessageCreateParams = MessageCreateParamsNonStreaming | MessageCreateParamsStreaming; export interface MessageCreateParamsBase { /** * The maximum number of tokens to generate before stopping. * * Note that our models may stop _before_ reaching this maximum. This parameter * only specifies the absolute maximum number of tokens to generate. * * Different models have different maximum values for this parameter. See * [models](https://docs.anthropic.com/en/docs/models-overview) for details. */ max_tokens: number; /** * Input messages. * * Our models are trained to operate on alternating `user` and `assistant` * conversational turns. When creating a new `Message`, you specify the prior * conversational turns with the `messages` parameter, and the model then generates * the next `Message` in the conversation. * * Each input message must be an object with a `role` and `content`. You can * specify a single `user`-role message, or you can include multiple `user` and * `assistant` messages. The first message must always use the `user` role. * * If the final message uses the `assistant` role, the response content will * continue immediately from the content in that message. This can be used to * constrain part of the model's response. * * Example with a single `user` message: * * ```json * [{ "role": "user", "content": "Hello, Claude" }] * ``` * * Example with multiple conversational turns: * * ```json * [ * { "role": "user", "content": "Hello there." }, * { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, * { "role": "user", "content": "Can you explain LLMs in plain English?" } * ] * ``` * * Example with a partially-filled response from Claude: * * ```json * [ * { * "role": "user", * "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" * }, * { "role": "assistant", "content": "The best answer is (" } * ] * ``` * * Each input message `content` may be either a single `string` or an array of * content blocks, where each block has a specific `type`. Using a `string` for * `content` is shorthand for an array of one content block of type `"text"`. The * following input messages are equivalent: * * ```json * { "role": "user", "content": "Hello, Claude" } * ``` * * ```json * { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } * ``` * * Starting with Claude 3 models, you can also send image content blocks: * * ```json * { * "role": "user", * "content": [ * { * "type": "image", * "source": { * "type": "base64", * "media_type": "image/jpeg", * "data": "/9j/4AAQSkZJRg..." * } * }, * { "type": "text", "text": "What is in this image?" } * ] * } * ``` * * We currently support the `base64` source type for images, and the `image/jpeg`, * `image/png`, `image/gif`, and `image/webp` media types. * * See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for * more input examples. * * Note that if you want to include a * [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use * the top-level `system` parameter — there is no `"system"` role for input * messages in the Messages API. */ messages: Array<PromptCachingBetaMessageParam>; /** * The model that will complete your prompt.\n\nSee * [models](https://docs.anthropic.com/en/docs/models-overview) for additional * details and options. */ model: MessagesAPI.Model; /** * An object describing metadata about the request. */ metadata?: MessageCreateParams.Metadata; /** * Custom text sequences that will cause the model to stop generating. * * Our models will normally stop when they have naturally completed their turn, * which will result in a response `stop_reason` of `"end_turn"`. * * If you want the model to stop generating when it encounters custom strings of * text, you can use the `stop_sequences` parameter. If the model encounters one of * the custom sequences, the response `stop_reason` value will be `"stop_sequence"` * and the response `stop_sequence` value will contain the matched stop sequence. */ stop_sequences?: Array<string>; /** * Whether to incrementally stream the response using server-sent events. * * See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for * details. */ stream?: boolean; /** * System prompt. * * A system prompt is a way of providing context and instructions to Claude, such * as specifying a particular goal or role. See our * [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). */ system?: string | Array<PromptCachingBetaTextBlockParam>; /** * Amount of randomness injected into the response. * * Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` * for analytical / multiple choice, and closer to `1.0` for creative and * generative tasks. * * Note that even with `temperature` of `0.0`, the results will not be fully * deterministic. */ temperature?: number; /** * How the model should use the provided tools. The model can use a specific tool, * any available tool, or decide by itself. */ tool_choice?: | MessageCreateParams.ToolChoiceAuto | MessageCreateParams.ToolChoiceAny | MessageCreateParams.ToolChoiceTool; /** * Definitions of tools that the model may use. * * If you include `tools` in your API request, the model may return `tool_use` * content blocks that represent the model's use of those tools. You can then run * those tools using the tool input generated by the model and then optionally * return results back to the model using `tool_result` content blocks. * * Each tool definition includes: * * - `name`: Name of the tool. * - `description`: Optional, but strongly-recommended description of the tool. * - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` * shape that the model will produce in `tool_use` output content blocks. * * For example, if you defined `tools` as: * * ```json * [ * { * "name": "get_stock_price", * "description": "Get the current stock price for a given ticker symbol.", * "input_schema": { * "type": "object", * "properties": { * "ticker": { * "type": "string", * "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." * } * }, * "required": ["ticker"] * } * } * ] * ``` * * And then asked the model "What's the S&P 500 at today?", the model might produce * `tool_use` content blocks in the response like this: * * ```json * [ * { * "type": "tool_use", * "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", * "name": "get_stock_price", * "input": { "ticker": "^GSPC" } * } * ] * ``` * * You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an * input, and return the following back to the model in a subsequent `user` * message: * * ```json * [ * { * "type": "tool_result", * "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", * "content": "259.75 USD" * } * ] * ``` * * Tools can be used for workflows that include running client-side tools and * functions, or more generally whenever you want the model to produce a particular * JSON structure of output. * * See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. */ tools?: Array<PromptCachingBetaTool>; /** * Only sample from the top K options for each subsequent token. * * Used to remove "long tail" low probability responses. * [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). * * Recommended for advanced use cases only. You usually only need to use * `temperature`. */ top_k?: number; /** * Use nucleus sampling. * * In nucleus sampling, we compute the cumulative distribution over all the options * for each subsequent token in decreasing probability order and cut it off once it * reaches a particular probability specified by `top_p`. You should either alter * `temperature` or `top_p`, but not both. * * Recommended for advanced use cases only. You usually only need to use * `temperature`. */ top_p?: number; } export namespace MessageCreateParams { /** * An object describing metadata about the request. */ export interface Metadata { /** * An external identifier for the user who is associated with the request. * * This should be a uuid, hash value, or other opaque identifier. Anthropic may use * this id to help detect abuse. Do not include any identifying information such as * name, email address, or phone number. */ user_id?: string | null; } /** * The model will automatically decide whether to use tools. */ export interface ToolChoiceAuto { type: 'auto'; } /** * The model will use any available tools. */ export interface ToolChoiceAny { type: 'any'; } /** * The model will use the specified tool with `tool_choice.name`. */ export interface ToolChoiceTool { /** * The name of the tool to use. */ name: string; type: 'tool'; } export type MessageCreateParamsNonStreaming = PromptCachingMessagesAPI.MessageCreateParamsNonStreaming; export type MessageCreateParamsStreaming = PromptCachingMessagesAPI.MessageCreateParamsStreaming; } export interface MessageCreateParamsNonStreaming extends MessageCreateParamsBase { /** * Whether to incrementally stream the response using server-sent events. * * See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for * details. */ stream?: false; } export interface MessageCreateParamsStreaming extends MessageCreateParamsBase { /** * Whether to incrementally stream the response using server-sent events. * * See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for * details. */ stream: true; } export namespace Messages { export import PromptCachingBetaCacheControlEphemeral = PromptCachingMessagesAPI.PromptCachingBetaCacheControlEphemeral; export import PromptCachingBetaImageBlockParam = PromptCachingMessagesAPI.PromptCachingBetaImageBlockParam; export import PromptCachingBetaMessage = PromptCachingMessagesAPI.PromptCachingBetaMessage; export import PromptCachingBetaMessageParam = PromptCachingMessagesAPI.PromptCachingBetaMessageParam; export import PromptCachingBetaTextBlockParam = PromptCachingMessagesAPI.PromptCachingBetaTextBlockParam; export import PromptCachingBetaTool = PromptCachingMessagesAPI.PromptCachingBetaTool; export import PromptCachingBetaToolResultBlockParam = PromptCachingMessagesAPI.PromptCachingBetaToolResultBlockParam; export import PromptCachingBetaToolUseBlockParam = PromptCachingMessagesAPI.PromptCachingBetaToolUseBlockParam; export import PromptCachingBetaUsage = PromptCachingMessagesAPI.PromptCachingBetaUsage; export import RawPromptCachingBetaMessageStartEvent = PromptCachingMessagesAPI.RawPromptCachingBetaMessageStartEvent; export import RawPromptCachingBetaMessageStreamEvent = PromptCachingMessagesAPI.RawPromptCachingBetaMessageStreamEvent; export import MessageCreateParams = PromptCachingMessagesAPI.MessageCreateParams; export import MessageCreateParamsNonStreaming = PromptCachingMessagesAPI.MessageCreateParamsNonStreaming; export import MessageCreateParamsStreaming = PromptCachingMessagesAPI.MessageCreateParamsStreaming; }