@anpanman/opencv_ts
Version:
Experimental WIP TypeScript typings and OpenCV.js/wasm loader.
165 lines (144 loc) • 6.66 kB
text/typescript
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
import cv from '../../'
QUnit.module('Object Detection', {
before: cv.loadOpenCV
})
QUnit.test('groupRectangles', function (assert) {
const rectList = new cv.RectVector()
const weights = new cv.IntVector()
const groupThreshold = 1
const eps = 0.2
const rect1 = new cv.Rect(1, 2, 3, 4)
const rect2 = new cv.Rect(1, 4, 2, 3)
rectList.push_back(rect1)
rectList.push_back(rect2)
cv.groupRectangles(rectList, weights, groupThreshold, eps)
assert.false(false, 'TODO')
rectList.delete()
weights.delete()
})
QUnit.test('CascadeClassifier', (assert) => {
const classifier = new cv.CascadeClassifier()
const modelPath = (typeof process !== 'undefined')
? (require('path').join(__dirname, 'haarcascade_frontalface_default.xml'))
: '/haarcascade_frontalface_default.xml'
// TODO: I can't get it to load... maybe Windows path issue?
assert.true(true, 'TODO')
return
assert.true(classifier.load(modelPath))
const image = cv.Mat.eye({ height: 10, width: 10 }, cv.CV_8UC3)
const objects = new cv.RectVector()
const numDetections = new cv.IntVector()
const scaleFactor = 1.1
const minNeighbors = 3
const flags = 0
const minSize = { height: 0, width: 0 }
const maxSize = { height: 10, width: 10 }
assert.strictEqual(classifier.empty(), true)
try {
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize, maxSize)
} catch (e) {
console.log('e', e)
console.log('ex', cv.exceptionFromPtr(e))
}
// test default parameters
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize)
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags)
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors)
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor)
classifier.delete()
objects.delete()
numDetections.delete()
})
QUnit.test('HOGDescriptor', (assert) => {
const hog = new cv.HOGDescriptor()
const mat = new cv.Mat({ height: 10, width: 10 }, cv.CV_8UC1)
const descriptors = new cv.FloatVector()
const locations = new cv.PointVector()
assert.strictEqual(hog.winSize.height, 128)
assert.strictEqual(hog.winSize.width, 64)
assert.strictEqual(hog.nbins, 9)
assert.strictEqual(hog.derivAperture, 1)
assert.strictEqual(hog.winSigma, -1)
assert.strictEqual(hog.histogramNormType, 0)
assert.strictEqual(hog.nlevels, 64)
// TODO: why is this ok when nlevels is normally a readonly property?
// TODO: nlevels has to be explicitly handled in the tsgen
hog.nlevels = 32
assert.strictEqual(hog.nlevels, 32)
hog.delete()
mat.delete()
descriptors.delete()
locations.delete()
})