@anpanman/opencv_ts
Version:
Experimental WIP TypeScript typings and OpenCV.js/wasm loader.
1,011 lines (814 loc) • 30 kB
text/typescript
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
import cv from '../../'
declare global {
interface Assert {
deepEqualWithTolerance(value: unknown, expected: unknown, tolerance: number, message?: string): void
}
}
Object.assign(QUnit.assert, {
deepEqualWithTolerance: (value: number[], expected: number[], tolerance: number, message?: string) => {
for (let i = 0; i < value.length; i = i + 1) {
QUnit.assert.pushResult({
result: Math.abs(value[i] - expected[i]) < tolerance,
actual: value[i],
expected: expected[i],
message: message ?? ''
})
}
}
})
QUnit.module('Image Processing', {
before: cv.loadOpenCV
})
QUnit.test('test_imgProc', function (assert) {
// calcHist
{
const vec1 = cv.Mat.ones(new cv.Size(20, 20), cv.CV_8UC1)
const source = new cv.MatVector()
source.push_back(vec1)
const channels = [0]
const histSize = [256]
const ranges = [0, 256]
const hist = new cv.Mat()
const mask = new cv.Mat()
const binSize = cv._malloc(4)
const binView = new Int32Array(cv.HEAP8.buffer, binSize)
binView[0] = 10
cv.calcHist(source, channels, mask, hist, histSize, ranges, false)
// hist should contains a N X 1 array.
let size = hist.size()
assert.strictEqual(size.height, 256)
assert.strictEqual(size.width, 1)
// default parameters
cv.calcHist(source, channels, mask, hist, histSize, ranges)
size = hist.size()
assert.strictEqual(size.height, 256)
assert.strictEqual(size.width, 1)
// Do we need to verify data in histogram?
// let dataView = hist.data;
// Free resource
cv._free(binSize)
mask.delete()
hist.delete()
}
// cvtColor
{
const source = new cv.Mat(10, 10, cv.CV_8UC3)
const dest = new cv.Mat()
cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY, 0)
assert.strictEqual(dest.channels(), 1)
cv.cvtColor(source, dest, cv.COLOR_BGR2GRAY)
assert.strictEqual(dest.channels(), 1)
cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA, 0)
assert.strictEqual(dest.channels(), 4)
cv.cvtColor(source, dest, cv.COLOR_BGR2BGRA)
assert.strictEqual(dest.channels(), 4)
dest.delete()
source.delete()
}
// equalizeHist
{
const source = new cv.Mat(10, 10, cv.CV_8UC1)
const dest = new cv.Mat()
cv.equalizeHist(source, dest)
// eualizeHist changes the content of a image, but does not alter meta data
// of it.
assert.strictEqual(source.channels(), dest.channels())
assert.strictEqual(source.type(), dest.type())
dest.delete()
source.delete()
}
// floodFill
{
const center = new cv.Point(5, 5)
const rect = new cv.Rect(0, 0, 0, 0)
const img = cv.Mat.zeros(10, 10, cv.CV_8UC1)
const color = new cv.Scalar(255)
cv.circle(img, center, 3, color, 1)
const edge = new cv.Mat()
cv.Canny(img, edge, 100, 255)
cv.copyMakeBorder(edge, edge, 1, 1, 1, 1, cv.BORDER_REPLICATE)
const expected_img_data = new Uint8Array([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 255, 0, 0, 0, 0,
0, 0, 0, 255, 255, 255, 255, 255, 0, 0,
0, 0, 0, 255, 0, 255, 0, 255, 0, 0,
0, 0, 255, 255, 255, 255, 0, 0, 255, 0,
0, 0, 0, 255, 0, 0, 0, 255, 0, 0,
0, 0, 0, 255, 255, 0, 255, 255, 0, 0,
0, 0, 0, 0, 0, 255, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
const img_elem = 10 * 10 * 1
const expected_img_data_ptr = cv._malloc(img_elem)
const expected_img_data_heap = new Uint8Array(cv.HEAPU8.buffer,
expected_img_data_ptr,
img_elem)
expected_img_data_heap.set(new Uint8Array(expected_img_data.buffer))
const expected_img = new cv.Mat(10, 10, cv.CV_8UC1, expected_img_data_ptr, 0)
const expected_rect = new cv.Rect(3, 3, 3, 3)
const compare_result = new cv.Mat(10, 10, cv.CV_8UC1)
cv.floodFill(img, edge, center, color, rect)
cv.compare(img, expected_img, compare_result, cv.CMP_EQ)
// expect every pixels are the same.
assert.strictEqual(cv.countNonZero(compare_result), img.total())
assert.strictEqual(rect.x, expected_rect.x)
assert.strictEqual(rect.y, expected_rect.y)
assert.strictEqual(rect.width, expected_rect.width)
assert.strictEqual(rect.height, expected_rect.height)
img.delete()
edge.delete()
expected_img.delete()
compare_result.delete()
}
// fillPoly
{
const img_width = 6
const img_height = 6
const img = cv.Mat.zeros(img_height, img_width, cv.CV_8UC1)
const npts = 4
const square_point_data = new Uint8Array([
1, 1,
4, 1,
4, 4,
1, 4])
const square_points = cv.matFromArray(npts, 1, cv.CV_32SC2, square_point_data)
const pts = new cv.MatVector()
pts.push_back(square_points)
const color = new cv.Scalar(255)
const expected_img_data = new Uint8Array([
0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 255, 0,
0, 255, 255, 255, 255, 0,
0, 255, 255, 255, 255, 0,
0, 255, 255, 255, 255, 0,
0, 0, 0, 0, 0, 0])
const expected_img = cv.matFromArray(img_height, img_width, cv.CV_8UC1, expected_img_data)
cv.fillPoly(img, pts, color)
const compare_result = new cv.Mat(img_height, img_width, cv.CV_8UC1)
cv.compare(img, expected_img, compare_result, cv.CMP_EQ)
// expect every pixels are the same.
assert.strictEqual(cv.countNonZero(compare_result), img.total())
img.delete()
square_points.delete()
pts.delete()
expected_img.delete()
compare_result.delete()
}
// fillConvexPoly
{
const img_width = 6
const img_height = 6
const img = cv.Mat.zeros(img_height, img_width, cv.CV_8UC1)
const npts = 4
const square_point_data = new Uint8Array([
1, 1,
4, 1,
4, 4,
1, 4])
const square_points = cv.matFromArray(npts, 1, cv.CV_32SC2, square_point_data)
const color = new cv.Scalar(255)
const expected_img_data = new Uint8Array([
0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 255, 0,
0, 255, 255, 255, 255, 0,
0, 255, 255, 255, 255, 0,
0, 255, 255, 255, 255, 0,
0, 0, 0, 0, 0, 0])
const expected_img = cv.matFromArray(img_height, img_width, cv.CV_8UC1, expected_img_data)
cv.fillConvexPoly(img, square_points, color)
const compare_result = new cv.Mat(img_height, img_width, cv.CV_8UC1)
cv.compare(img, expected_img, compare_result, cv.CMP_EQ)
// expect every pixels are the same.
assert.strictEqual(cv.countNonZero(compare_result), img.total())
img.delete()
square_points.delete()
expected_img.delete()
compare_result.delete()
}
})
QUnit.test('test_segmentation', function (assert) {
const THRESHOLD = 127.0
const THRESHOLD_MAX = 210.0
// threshold
{
const source = new cv.Mat(1, 5, cv.CV_8UC1)
const sourceView = source.data
sourceView[0] = 0 // < threshold
sourceView[1] = 100 // < threshold
sourceView[2] = 200 // > threshold
const dest = new cv.Mat()
cv.threshold(source, dest, THRESHOLD, THRESHOLD_MAX, cv.THRESH_BINARY)
const destView = dest.data
assert.strictEqual(destView[0], 0)
assert.strictEqual(destView[1], 0)
assert.strictEqual(destView[2], THRESHOLD_MAX)
}
// adaptiveThreshold
{
const source = cv.Mat.zeros(1, 5, cv.CV_8UC1)
const sourceView = source.data
sourceView[0] = 50
sourceView[1] = 150
sourceView[2] = 200
const dest = new cv.Mat()
const C = 0
const blockSize = 3
cv.adaptiveThreshold(source, dest, THRESHOLD_MAX,
cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, blockSize, C)
const destView = dest.data
assert.strictEqual(destView[0], 0)
assert.strictEqual(destView[1], THRESHOLD_MAX)
assert.strictEqual(destView[2], THRESHOLD_MAX)
}
})
QUnit.test('test_shape', function (assert) {
// moments
{
const points = new cv.Mat(1, 4, cv.CV_32SC2)
const data32S = points.data32S
data32S[0] = 50
data32S[1] = 56
data32S[2] = 53
data32S[3] = 53
data32S[4] = 46
data32S[5] = 54
data32S[6] = 49
data32S[7] = 51
let m = cv.moments(points, false)
let area = cv.contourArea(points, false)
assert.strictEqual(m.m00, 0)
assert.strictEqual(m.m01, 0)
assert.strictEqual(m.m10, 0)
assert.strictEqual(area, 0)
// default parameters
m = cv.moments(points)
area = cv.contourArea(points)
assert.strictEqual(m.m00, 0)
assert.strictEqual(m.m01, 0)
assert.strictEqual(m.m10, 0)
assert.strictEqual(area, 0)
points.delete()
}
})
QUnit.test('test_min_enclosing', function (assert) {
{
const points = new cv.Mat(4, 1, cv.CV_32FC2)
points.data32F[0] = 0
points.data32F[1] = 0
points.data32F[2] = 1
points.data32F[3] = 0
points.data32F[4] = 1
points.data32F[5] = 1
points.data32F[6] = 0
points.data32F[7] = 1
const circle = cv.minEnclosingCircle(points)
assert.deepEqual(circle.center, { x: 0.5, y: 0.5 })
assert.true(Math.abs(circle.radius - Math.sqrt(2) / 2) < 0.001)
points.delete()
}
})
QUnit.test('test_filter', function (assert) {
// blur
{
const mat1 = cv.Mat.ones(5, 5, cv.CV_8UC3)
const mat2 = new cv.Mat()
cv.blur(mat1, mat2, { height: 3, width: 3 }, { x: -1, y: -1 }, cv.BORDER_DEFAULT)
// Verify result.
let size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 5)
assert.strictEqual(size.width, 5)
cv.blur(mat1, mat2, { height: 3, width: 3 }, { x: -1, y: -1 })
// Verify result.
size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 5)
assert.strictEqual(size.width, 5)
cv.blur(mat1, mat2, { height: 3, width: 3 })
// Verify result.
size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 5)
assert.strictEqual(size.width, 5)
mat1.delete()
mat2.delete()
}
// GaussianBlur
{
const mat1 = cv.Mat.ones(7, 7, cv.CV_8UC1)
const mat2 = new cv.Mat()
cv.GaussianBlur(mat1, mat2, new cv.Size(3, 3), 0, 0, // eslint-disable-line new-cap
cv.BORDER_DEFAULT)
// Verify result.
const size = mat2.size()
assert.strictEqual(mat2.channels(), 1)
assert.strictEqual(size.height, 7)
assert.strictEqual(size.width, 7)
}
// medianBlur
{
const mat1 = cv.Mat.ones(9, 9, cv.CV_8UC3)
const mat2 = new cv.Mat()
cv.medianBlur(mat1, mat2, 3)
// Verify result.
const size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 9)
assert.strictEqual(size.width, 9)
}
// Transpose
{
const mat1 = cv.Mat.eye(9, 9, cv.CV_8UC3)
const mat2 = new cv.Mat()
cv.transpose(mat1, mat2)
// Verify result.
const size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 9)
assert.strictEqual(size.width, 9)
}
// bilateralFilter
{
const mat1 = cv.Mat.ones(11, 11, cv.CV_8UC3)
const mat2 = new cv.Mat()
cv.bilateralFilter(mat1, mat2, 3, 6, 1.5, cv.BORDER_DEFAULT)
// Verify result.
let size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 11)
assert.strictEqual(size.width, 11)
// default parameters
cv.bilateralFilter(mat1, mat2, 3, 6, 1.5)
// Verify result.
size = mat2.size()
assert.strictEqual(mat2.channels(), 3)
assert.strictEqual(size.height, 11)
assert.strictEqual(size.width, 11)
mat1.delete()
mat2.delete()
}
// Watershed
{
const mat = cv.Mat.ones(11, 11, cv.CV_8UC3)
const out = new cv.Mat(11, 11, cv.CV_32SC1)
cv.watershed(mat, out)
// Verify result.
const size = out.size()
assert.strictEqual(out.channels(), 1)
assert.strictEqual(size.height, 11)
assert.strictEqual(size.width, 11)
assert.strictEqual(out.elemSize1(), 4)
mat.delete()
out.delete()
}
// Concat
{
const mat = cv.Mat.ones({ height: 10, width: 5 }, cv.CV_8UC3)
const mat2 = cv.Mat.eye({ height: 10, width: 5 }, cv.CV_8UC3)
const mat3 = cv.Mat.eye({ height: 10, width: 5 }, cv.CV_8UC3)
const out = new cv.Mat()
const input = new cv.MatVector()
input.push_back(mat)
input.push_back(mat2)
input.push_back(mat3)
cv.vconcat(input, out)
// Verify result.
let size = out.size()
assert.strictEqual(out.channels(), 3)
assert.strictEqual(size.height, 30)
assert.strictEqual(size.width, 5)
assert.strictEqual(out.elemSize1(), 1)
cv.hconcat(input, out)
// Verify result.
size = out.size()
assert.strictEqual(out.channels(), 3)
assert.strictEqual(size.height, 10)
assert.strictEqual(size.width, 15)
assert.strictEqual(out.elemSize1(), 1)
input.delete()
out.delete()
}
// distanceTransform letiants
{
const mat = cv.Mat.ones(11, 11, cv.CV_8UC1)
const out = new cv.Mat(11, 11, cv.CV_32FC1)
const labels = new cv.Mat(11, 11, cv.CV_32FC1)
const maskSize = 3
cv.distanceTransform(mat, out, cv.DIST_L2, maskSize, cv.CV_32F)
// Verify result.
let size = out.size()
assert.strictEqual(out.channels(), 1)
assert.strictEqual(size.height, 11)
assert.strictEqual(size.width, 11)
assert.strictEqual(out.elemSize1(), 4)
cv.distanceTransformWithLabels(mat, out, labels, cv.DIST_L2, maskSize,
cv.DIST_LABEL_CCOMP)
// Verify result.
size = out.size()
assert.strictEqual(out.channels(), 1)
assert.strictEqual(size.height, 11)
assert.strictEqual(size.width, 11)
assert.strictEqual(out.elemSize1(), 4)
size = labels.size()
assert.strictEqual(labels.channels(), 1)
assert.strictEqual(size.height, 11)
assert.strictEqual(size.width, 11)
assert.strictEqual(labels.elemSize1(), 4)
mat.delete()
out.delete()
labels.delete()
}
// Min, Max
{
const data1 = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9])
const data2 = new Uint8Array([0, 4, 0, 8, 0, 12, 0, 16, 0])
const expectedMin = new Uint8Array([0, 2, 0, 4, 0, 6, 0, 8, 0])
const expectedMax = new Uint8Array([1, 4, 3, 8, 5, 12, 7, 16, 9])
const dataPtr = cv._malloc(3 * 3 * 1)
const dataPtr2 = cv._malloc(3 * 3 * 1)
const dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3 * 3 * 1)
dataHeap.set(new Uint8Array(data1.buffer))
const dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3 * 3 * 1)
dataHeap2.set(new Uint8Array(data2.buffer))
const mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0)
const mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0)
const mat3 = new cv.Mat()
cv.min(mat1, mat2, mat3)
// Verify result.
let size = mat2.size()
assert.strictEqual(mat2.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(mat3.data, expectedMin)
cv.max(mat1, mat2, mat3)
// Verify result.
size = mat2.size()
assert.strictEqual(mat2.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(mat3.data, expectedMax)
cv._free(dataPtr)
cv._free(dataPtr2)
}
// Bitwise operations
{
const data1 = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128])
const data2 = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255])
const expectedAnd = new Uint8Array([0, 1, 2, 4, 8, 16, 32, 64, 128])
const expectedOr = new Uint8Array([255, 255, 255, 255, 255, 255, 255, 255, 255])
const expectedXor = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127])
const expectedNot = new Uint8Array([255, 254, 253, 251, 247, 239, 223, 191, 127])
const dataPtr = cv._malloc(3 * 3 * 1)
const dataPtr2 = cv._malloc(3 * 3 * 1)
const dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3 * 3 * 1)
dataHeap.set(new Uint8Array(data1.buffer))
const dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3 * 3 * 1)
dataHeap2.set(new Uint8Array(data2.buffer))
const mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0)
const mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0)
const mat3 = new cv.Mat()
const none = new cv.Mat()
cv.bitwise_not(mat1, mat3, none)
// Verify result.
let size = mat3.size()
assert.strictEqual(mat3.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(mat3.data, expectedNot)
cv.bitwise_and(mat1, mat2, mat3, none)
// Verify result.
size = mat3.size()
assert.strictEqual(mat3.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(mat3.data, expectedAnd)
cv.bitwise_or(mat1, mat2, mat3, none)
// Verify result.
size = mat3.size()
assert.strictEqual(mat3.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(mat3.data, expectedOr)
cv.bitwise_xor(mat1, mat2, mat3, none)
// Verify result.
size = mat3.size()
assert.strictEqual(mat3.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(mat3.data, expectedXor)
cv._free(dataPtr)
cv._free(dataPtr2)
}
// Arithmetic operations
{
const data1 = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8])
const data2 = new Uint8Array([0, 2, 4, 6, 8, 10, 12, 14, 16])
const data3 = new Uint8Array([0, 1, 0, 1, 0, 1, 0, 1, 0])
// |data1 - data2|
const expectedAbsDiff = new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8])
const expectedAdd = new Uint8Array([0, 3, 6, 9, 12, 15, 18, 21, 24])
const alpha = 4
const beta = -1
const gamma = 3
// 4*data1 - data2 + 3
const expectedWeightedAdd = new Uint8Array([3, 5, 7, 9, 11, 13, 15, 17, 19])
const dataPtr = cv._malloc(3 * 3 * 1)
const dataPtr2 = cv._malloc(3 * 3 * 1)
const dataPtr3 = cv._malloc(3 * 3 * 1)
const dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 3 * 3 * 1)
dataHeap.set(new Uint8Array(data1.buffer))
const dataHeap2 = new Uint8Array(cv.HEAPU8.buffer, dataPtr2, 3 * 3 * 1)
dataHeap2.set(new Uint8Array(data2.buffer))
const dataHeap3 = new Uint8Array(cv.HEAPU8.buffer, dataPtr3, 3 * 3 * 1)
dataHeap3.set(new Uint8Array(data3.buffer))
const mat1 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr, 0)
const mat2 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr2, 0)
const mat3 = new cv.Mat(3, 3, cv.CV_8UC1, dataPtr3, 0)
const dst = new cv.Mat()
const none = new cv.Mat()
cv.absdiff(mat1, mat2, dst)
// Verify result.
let size = dst.size()
assert.strictEqual(dst.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(dst.data, expectedAbsDiff)
cv.add(mat1, mat2, dst, none, -1)
// Verify result.
size = dst.size()
assert.strictEqual(dst.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(dst.data, expectedAdd)
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst, -1)
// Verify result.
size = dst.size()
assert.strictEqual(dst.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(dst.data, expectedWeightedAdd)
// default parameter
cv.addWeighted(mat1, alpha, mat2, beta, gamma, dst)
// Verify result.
size = dst.size()
assert.strictEqual(dst.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqual(dst.data, expectedWeightedAdd)
mat1.delete()
mat2.delete()
mat3.delete()
dst.delete()
none.delete()
}
// Integral letiants
{
const mat = cv.Mat.eye({ height: 100, width: 100 }, cv.CV_8UC3)
const sum = new cv.Mat()
const sqSum = new cv.Mat()
const title = new cv.Mat()
cv.integral(mat, sum, -1)
// Verify result.
let size = sum.size()
assert.strictEqual(sum.channels(), 3)
assert.strictEqual(size.height, 100 + 1)
assert.strictEqual(size.width, 100 + 1)
cv.integral2(mat, sum, sqSum, -1, -1)
// Verify result.
size = sum.size()
assert.strictEqual(sum.channels(), 3)
assert.strictEqual(size.height, 100 + 1)
assert.strictEqual(size.width, 100 + 1)
size = sqSum.size()
assert.strictEqual(sqSum.channels(), 3)
assert.strictEqual(size.height, 100 + 1)
assert.strictEqual(size.width, 100 + 1)
mat.delete()
sum.delete()
sqSum.delete()
title.delete()
}
// Mean, meanSTDev
{
const mat = cv.Mat.eye({ height: 100, width: 100 }, cv.CV_8UC3)
const sum = new cv.Mat()
const sqSum = new cv.Mat()
const title = new cv.Mat()
cv.integral(mat, sum, -1)
// Verify result.
let size = sum.size()
assert.strictEqual(sum.channels(), 3)
assert.strictEqual(size.height, 100 + 1)
assert.strictEqual(size.width, 100 + 1)
cv.integral2(mat, sum, sqSum, -1, -1)
// Verify result.
size = sum.size()
assert.strictEqual(sum.channels(), 3)
assert.strictEqual(size.height, 100 + 1)
assert.strictEqual(size.width, 100 + 1)
size = sqSum.size()
assert.strictEqual(sqSum.channels(), 3)
assert.strictEqual(size.height, 100 + 1)
assert.strictEqual(size.width, 100 + 1)
mat.delete()
sum.delete()
sqSum.delete()
title.delete()
}
// Invert
{
const inv1 = new cv.Mat()
const inv2 = new cv.Mat()
const inv3 = new cv.Mat()
const inv4 = new cv.Mat()
const data1 = new Float32Array([1, 0, 0,
0, 1, 0,
0, 0, 1])
const data2 = new Float32Array([0, 0, 0,
0, 5, 0,
0, 0, 0])
const data3 = new Float32Array([1, 1, 1, 0,
0, 3, 1, 2,
2, 3, 1, 0,
1, 0, 2, 1])
const data4 = new Float32Array([1, 4, 5,
4, 2, 2,
5, 2, 2])
const expected1 = new Float32Array([1, 0, 0,
0, 1, 0,
0, 0, 1])
// Inverse does not exist!
const expected3 = new Float32Array([-3, -1 / 2, 3 / 2, 1,
1, 1 / 4, -1 / 4, -1 / 2,
3, 1 / 4, -5 / 4, -1 / 2,
-3, 0, 1, 1])
const expected4 = new Float32Array([0, -1, 1,
-1, 23 / 2, -9,
1, -9, 7])
const dataPtr1 = cv._malloc(3 * 3 * 4)
const dataPtr2 = cv._malloc(3 * 3 * 4)
const dataPtr3 = cv._malloc(4 * 4 * 4)
const dataPtr4 = cv._malloc(3 * 3 * 4)
const dataHeap = new Float32Array(cv.HEAP32.buffer, dataPtr1, 3 * 3)
dataHeap.set(new Float32Array(data1.buffer))
const dataHeap2 = new Float32Array(cv.HEAP32.buffer, dataPtr2, 3 * 3)
dataHeap2.set(new Float32Array(data2.buffer))
const dataHeap3 = new Float32Array(cv.HEAP32.buffer, dataPtr3, 4 * 4)
dataHeap3.set(new Float32Array(data3.buffer))
const dataHeap4 = new Float32Array(cv.HEAP32.buffer, dataPtr4, 3 * 3)
dataHeap4.set(new Float32Array(data4.buffer))
const mat1 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr1, 0)
const mat2 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr2, 0)
const mat3 = new cv.Mat(4, 4, cv.CV_32FC1, dataPtr3, 0)
const mat4 = new cv.Mat(3, 3, cv.CV_32FC1, dataPtr4, 0)
cv.invert(mat1, inv1, 0)
// Verify result.
let size = inv1.size()
assert.strictEqual(inv1.channels(), 1)
assert.strictEqual(size.height, 3)
assert.strictEqual(size.width, 3)
assert.deepEqualWithTolerance(inv1.data32F, expected1, 0.0001)
cv.invert(mat2, inv2, 0)
// Verify result.
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001)
cv.invert(mat3, inv3, 0)
// Verify result.
size = inv3.size()
assert.strictEqual(inv3.channels(), 1)
assert.strictEqual(size.height, 4)
assert.strictEqual(size.width, 4)
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001)
cv.invert(mat3, inv3, 1)
// Verify result.
assert.deepEqualWithTolerance(inv3.data32F, expected3, 0.0001)
cv.invert(mat4, inv4, 2)
// Verify result.
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001)
cv.invert(mat4, inv4, 3)
// Verify result.
assert.deepEqualWithTolerance(inv4.data32F, expected4, 0.0001)
mat1.delete()
mat2.delete()
mat3.delete()
mat4.delete()
inv1.delete()
inv2.delete()
inv3.delete()
inv4.delete()
}
//Rotate
{
const dst = new cv.Mat()
const src = cv.matFromArray(3, 2, cv.CV_8U, [1, 2, 3, 4, 5, 6])
cv.rotate(src, dst, cv.ROTATE_90_CLOCKWISE)
const size = dst.size()
assert.strictEqual(size.height, 2, 'ROTATE_HEIGHT')
assert.strictEqual(size.width, 3, 'ROTATE_WIGTH')
const expected = new Uint8Array([5, 3, 1, 6, 4, 2])
assert.deepEqual(dst.data, expected)
dst.delete()
src.delete()
}
})
QUnit.test('warpPolar', function (assert) {
const lines = new cv.Mat(255, 255, cv.CV_8U, new cv.Scalar(0))
for (let r = 0; r < lines.rows; r++) {
lines.row(r).setTo(new cv.Scalar(r))
}
cv.warpPolar(lines, lines, { width: 5, height: 5 }, new cv.Point(2, 2), 3,
cv.INTER_CUBIC | cv.WARP_FILL_OUTLIERS | cv.WARP_INVERSE_MAP)
assert.true(lines instanceof cv.Mat)
assert.deepEqual(Array.from(lines.data), [
159, 172, 191, 210, 223,
146, 159, 191, 223, 236,
128, 128, 0, 0, 0,
109, 96, 64, 32, 19,
96, 83, 64, 45, 32
])
})
// TODO: this seems to be missing in wasm
// QUnit.test('IntelligentScissorsMB', function (assert) {
// const lines = new cv.Mat(50, 100, cv.CV_8U, new cv.Scalar(0))
// lines.row(10).setTo(new cv.Scalar(255))
// assert.true(lines instanceof cv.Mat)
// const tool = new cv.segmentation_IntelligentScissorsMB()
// tool.applyImage(lines)
// assert.true(lines instanceof cv.Mat)
// lines.delete()
// tool.buildMap(new cv.Point(10, 10))
// const contour = new cv.Mat()
// tool.getContour(new cv.Point(50, 10), contour)
// assert.strictEqual(contour.type(), cv.CV_32SC2)
// assert.true(contour.total() == 41, contour.total())
// tool.getContour(new cv.Point(80, 10), contour)
// assert.strictEqual(contour.type(), cv.CV_32SC2)
// assert.true(contour.total() == 71, contour.total())
// })