@andypai/neuroflow
Version:
simple neural network library inspired by karpathy/micrograd and tfjs
30 lines (25 loc) • 801 B
JavaScript
import Neuron from './neuron.js'
import Value from './engine.js'
// Based on python random.seed(1)
const weights = [-0.73127, 0.69486, 0.52754].map((v) => new Value(v))
test('#forward', () => {
const neuron = new Neuron({ weights })
const n = neuron.forward([1, 2, 3])
expect(n.data).toBeCloseTo(2.24111)
})
test('#parameters', () => {
const neuron = new Neuron({ weights })
const params = neuron.parameters()
expect(params.length).toBe(4)
expect(params[0].data).toBeCloseTo(weights[0].data)
expect(params[1].data).toBeCloseTo(weights[1].data)
expect(params[2].data).toBeCloseTo(weights[2].data)
expect(params[3].data).toBe(0)
})
test('#toString', () => {
const neuron = new Neuron({
numOfInputs: 3,
weights,
})
expect(neuron.toString()).toBe('RELUNeuron(3)')
})