UNPKG

@airgap/crypto

Version:

The @airgap/crypto packages provides common crypto functionalities.

129 lines 6.82 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; Object.defineProperty(exports, "__esModule", { value: true }); exports.deriveSr25519 = void 0; var wasm_crypto_1 = require("@polkadot/wasm-crypto"); var derivation_1 = require("../utils/derivation"); var hash_1 = require("../utils/hash"); function deriveSr25519(compatibility, seed, derivationPath) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, compatibility === 'substrate' ? deriveSr25519Substrate(seed, derivationPath) : deriveSr25519Standard(seed, derivationPath)]; }); }); } exports.deriveSr25519 = deriveSr25519; function deriveSr25519Standard(seed, derivationPath) { return __awaiter(this, void 0, void 0, function () { return __generator(this, function (_a) { throw new Error('Not implemented'); }); }); } function deriveSr25519Substrate(seed, derivationPath) { return __awaiter(this, void 0, void 0, function () { var masterNode; return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, substrateMasterKeyFromSeed(seed)]; case 1: masterNode = _a.sent(); return [2 /*return*/, derivationPath !== undefined ? deriveSubstrate(masterNode, derivationPath) : masterNode]; } }); }); } function substrateMasterKeyFromSeed(seed) { return __awaiter(this, void 0, void 0, function () { var keyPair, _a, secretKey, publicKey; return __generator(this, function (_b) { switch (_b.label) { case 0: return [4 /*yield*/, (0, wasm_crypto_1.waitReady)()]; case 1: _b.sent(); keyPair = (0, wasm_crypto_1.sr25519KeypairFromSeed)(seed.slice(0, 32)); _a = splitKeyPair(keyPair), secretKey = _a.secretKey, publicKey = _a.publicKey; return [2 /*return*/, { depth: 0, parentFingerprint: 0x00000000, index: 0, chainCode: Buffer.alloc(32, 0), secretKey: secretKey, publicKey: publicKey }]; } }); }); } function deriveSubstrate(masterNode, derivationPath) { return __awaiter(this, void 0, void 0, function () { var derivationIndices; return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, wasm_crypto_1.waitReady)()]; case 1: _a.sent(); derivationIndices = (0, derivation_1.splitDerivationPath)(derivationPath); return [2 /*return*/, derivationIndices.reduce(function (derivedKey, next) { var parentFingerprint = (0, hash_1.hash160)(derivedKey.publicKey).readUInt32BE(0); var deriveKeyPair = next.isHardened ? wasm_crypto_1.sr25519DeriveKeypairHard : wasm_crypto_1.sr25519DeriveKeypairSoft; var keyPair = Buffer.concat([derivedKey.secretKey, derivedKey.publicKey]); var index = Buffer.alloc(32, 0); index.writeUInt32LE(next.value); var derivedKeyPair = deriveKeyPair(keyPair, index); var _a = splitKeyPair(derivedKeyPair), secretKey = _a.secretKey, publicKey = _a.publicKey; return { depth: derivedKey.depth + 1, parentFingerprint: parentFingerprint, index: next.masked, chainCode: index, secretKey: secretKey, publicKey: publicKey }; }, masterNode)]; } }); }); } function splitKeyPair(keyPair) { var keyPairBuffer = Buffer.from(keyPair); var secretKey = keyPairBuffer.slice(0, 64); var publicKey = keyPairBuffer.slice(64); return { secretKey: secretKey, publicKey: publicKey }; } //# sourceMappingURL=derive.js.map