@airgap/crypto
Version:
The @airgap/crypto packages provides common crypto functionalities.
129 lines • 6.82 kB
JavaScript
;
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
var __generator = (this && this.__generator) || function (thisArg, body) {
var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
function verb(n) { return function (v) { return step([n, v]); }; }
function step(op) {
if (f) throw new TypeError("Generator is already executing.");
while (_) try {
if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
if (y = 0, t) op = [op[0] & 2, t.value];
switch (op[0]) {
case 0: case 1: t = op; break;
case 4: _.label++; return { value: op[1], done: false };
case 5: _.label++; y = op[1]; op = [0]; continue;
case 7: op = _.ops.pop(); _.trys.pop(); continue;
default:
if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
if (t[2]) _.ops.pop();
_.trys.pop(); continue;
}
op = body.call(thisArg, _);
} catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
}
};
Object.defineProperty(exports, "__esModule", { value: true });
exports.deriveSr25519 = void 0;
var wasm_crypto_1 = require("@polkadot/wasm-crypto");
var derivation_1 = require("../utils/derivation");
var hash_1 = require("../utils/hash");
function deriveSr25519(compatibility, seed, derivationPath) {
return __awaiter(this, void 0, void 0, function () {
return __generator(this, function (_a) {
return [2 /*return*/, compatibility === 'substrate' ? deriveSr25519Substrate(seed, derivationPath) : deriveSr25519Standard(seed, derivationPath)];
});
});
}
exports.deriveSr25519 = deriveSr25519;
function deriveSr25519Standard(seed, derivationPath) {
return __awaiter(this, void 0, void 0, function () {
return __generator(this, function (_a) {
throw new Error('Not implemented');
});
});
}
function deriveSr25519Substrate(seed, derivationPath) {
return __awaiter(this, void 0, void 0, function () {
var masterNode;
return __generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, substrateMasterKeyFromSeed(seed)];
case 1:
masterNode = _a.sent();
return [2 /*return*/, derivationPath !== undefined ? deriveSubstrate(masterNode, derivationPath) : masterNode];
}
});
});
}
function substrateMasterKeyFromSeed(seed) {
return __awaiter(this, void 0, void 0, function () {
var keyPair, _a, secretKey, publicKey;
return __generator(this, function (_b) {
switch (_b.label) {
case 0: return [4 /*yield*/, (0, wasm_crypto_1.waitReady)()];
case 1:
_b.sent();
keyPair = (0, wasm_crypto_1.sr25519KeypairFromSeed)(seed.slice(0, 32));
_a = splitKeyPair(keyPair), secretKey = _a.secretKey, publicKey = _a.publicKey;
return [2 /*return*/, {
depth: 0,
parentFingerprint: 0x00000000,
index: 0,
chainCode: Buffer.alloc(32, 0),
secretKey: secretKey,
publicKey: publicKey
}];
}
});
});
}
function deriveSubstrate(masterNode, derivationPath) {
return __awaiter(this, void 0, void 0, function () {
var derivationIndices;
return __generator(this, function (_a) {
switch (_a.label) {
case 0: return [4 /*yield*/, (0, wasm_crypto_1.waitReady)()];
case 1:
_a.sent();
derivationIndices = (0, derivation_1.splitDerivationPath)(derivationPath);
return [2 /*return*/, derivationIndices.reduce(function (derivedKey, next) {
var parentFingerprint = (0, hash_1.hash160)(derivedKey.publicKey).readUInt32BE(0);
var deriveKeyPair = next.isHardened ? wasm_crypto_1.sr25519DeriveKeypairHard : wasm_crypto_1.sr25519DeriveKeypairSoft;
var keyPair = Buffer.concat([derivedKey.secretKey, derivedKey.publicKey]);
var index = Buffer.alloc(32, 0);
index.writeUInt32LE(next.value);
var derivedKeyPair = deriveKeyPair(keyPair, index);
var _a = splitKeyPair(derivedKeyPair), secretKey = _a.secretKey, publicKey = _a.publicKey;
return {
depth: derivedKey.depth + 1,
parentFingerprint: parentFingerprint,
index: next.masked,
chainCode: index,
secretKey: secretKey,
publicKey: publicKey
};
}, masterNode)];
}
});
});
}
function splitKeyPair(keyPair) {
var keyPairBuffer = Buffer.from(keyPair);
var secretKey = keyPairBuffer.slice(0, 64);
var publicKey = keyPairBuffer.slice(64);
return { secretKey: secretKey, publicKey: publicKey };
}
//# sourceMappingURL=derive.js.map