UNPKG

@ai-toolkit/openai

Version:

The **[OpenAI provider](https://sdk.khulnasoft.com/providers/ai-toolkit-providers/openai)** for the [AI TOOLKIT](https://sdk.khulnasoft.com/docs) contains language model support for the OpenAI chat and completion APIs and embedding model support for the O

1 lines 96.8 kB
{"version":3,"sources":["../../src/openai-chat-language-model.ts","../../src/convert-to-openai-chat-messages.ts","../../src/map-openai-chat-logprobs.ts","../../src/map-openai-finish-reason.ts","../../src/openai-error.ts","../../src/get-response-metadata.ts","../../src/openai-prepare-tools.ts","../../src/openai-completion-language-model.ts","../../src/convert-to-openai-completion-prompt.ts","../../src/map-openai-completion-logprobs.ts","../../src/openai-embedding-model.ts","../../src/openai-image-model.ts","../../src/openai-image-settings.ts"],"sourcesContent":["import {\n InvalidResponseDataError,\n LanguageModelV1,\n LanguageModelV1CallWarning,\n LanguageModelV1FinishReason,\n LanguageModelV1LogProbs,\n LanguageModelV1ProviderMetadata,\n LanguageModelV1StreamPart,\n UnsupportedFunctionalityError,\n} from '@ai-toolkit/provider';\nimport {\n FetchFunction,\n ParseResult,\n combineHeaders,\n createEventSourceResponseHandler,\n createJsonResponseHandler,\n generateId,\n isParsableJson,\n postJsonToApi,\n} from '@ai-toolkit/provider-utils';\nimport { z } from 'zod';\nimport { convertToOpenAIChatMessages } from './convert-to-openai-chat-messages';\nimport { mapOpenAIChatLogProbsOutput } from './map-openai-chat-logprobs';\nimport { mapOpenAIFinishReason } from './map-openai-finish-reason';\nimport { OpenAIChatModelId, OpenAIChatSettings } from './openai-chat-settings';\nimport {\n openaiErrorDataSchema,\n openaiFailedResponseHandler,\n} from './openai-error';\nimport { getResponseMetadata } from './get-response-metadata';\nimport { prepareTools } from './openai-prepare-tools';\n\ntype OpenAIChatConfig = {\n provider: string;\n compatibility: 'strict' | 'compatible';\n headers: () => Record<string, string | undefined>;\n url: (options: { modelId: string; path: string }) => string;\n fetch?: FetchFunction;\n};\n\nexport class OpenAIChatLanguageModel implements LanguageModelV1 {\n readonly specificationVersion = 'v1';\n\n readonly modelId: OpenAIChatModelId;\n readonly settings: OpenAIChatSettings;\n\n private readonly config: OpenAIChatConfig;\n\n constructor(\n modelId: OpenAIChatModelId,\n settings: OpenAIChatSettings,\n config: OpenAIChatConfig,\n ) {\n this.modelId = modelId;\n this.settings = settings;\n this.config = config;\n }\n\n get supportsStructuredOutputs(): boolean {\n // enable structured outputs for reasoning models by default:\n // TODO in the next major version, remove this and always use json mode for models\n // that support structured outputs (blacklist other models)\n return this.settings.structuredOutputs ?? isReasoningModel(this.modelId);\n }\n\n get defaultObjectGenerationMode() {\n // audio models don't support structured outputs:\n if (isAudioModel(this.modelId)) {\n return 'tool';\n }\n\n return this.supportsStructuredOutputs ? 'json' : 'tool';\n }\n\n get provider(): string {\n return this.config.provider;\n }\n\n get supportsImageUrls(): boolean {\n // image urls can be sent if downloadImages is disabled (default):\n return !this.settings.downloadImages;\n }\n\n private getArgs({\n mode,\n prompt,\n maxTokens,\n temperature,\n topP,\n topK,\n frequencyPenalty,\n presencePenalty,\n stopSequences,\n responseFormat,\n seed,\n providerMetadata,\n }: Parameters<LanguageModelV1['doGenerate']>[0]) {\n const type = mode.type;\n\n const warnings: LanguageModelV1CallWarning[] = [];\n\n if (topK != null) {\n warnings.push({\n type: 'unsupported-setting',\n setting: 'topK',\n });\n }\n\n if (\n responseFormat?.type === 'json' &&\n responseFormat.schema != null &&\n !this.supportsStructuredOutputs\n ) {\n warnings.push({\n type: 'unsupported-setting',\n setting: 'responseFormat',\n details:\n 'JSON response format schema is only supported with structuredOutputs',\n });\n }\n\n const useLegacyFunctionCalling = this.settings.useLegacyFunctionCalling;\n\n if (useLegacyFunctionCalling && this.settings.parallelToolCalls === true) {\n throw new UnsupportedFunctionalityError({\n functionality: 'useLegacyFunctionCalling with parallelToolCalls',\n });\n }\n\n if (useLegacyFunctionCalling && this.supportsStructuredOutputs) {\n throw new UnsupportedFunctionalityError({\n functionality: 'structuredOutputs with useLegacyFunctionCalling',\n });\n }\n\n if (\n getSystemMessageMode(this.modelId) === 'remove' &&\n prompt.some(message => message.role === 'system')\n ) {\n warnings.push({\n type: 'other',\n message: 'system messages are removed for this model',\n });\n }\n\n const baseArgs = {\n // model id:\n model: this.modelId,\n\n // model specific settings:\n logit_bias: this.settings.logitBias,\n logprobs:\n this.settings.logprobs === true ||\n typeof this.settings.logprobs === 'number'\n ? true\n : undefined,\n top_logprobs:\n typeof this.settings.logprobs === 'number'\n ? this.settings.logprobs\n : typeof this.settings.logprobs === 'boolean'\n ? this.settings.logprobs\n ? 0\n : undefined\n : undefined,\n user: this.settings.user,\n parallel_tool_calls: this.settings.parallelToolCalls,\n\n // standardized settings:\n max_tokens: maxTokens,\n temperature,\n top_p: topP,\n frequency_penalty: frequencyPenalty,\n presence_penalty: presencePenalty,\n response_format:\n responseFormat?.type === 'json'\n ? this.supportsStructuredOutputs && responseFormat.schema != null\n ? {\n type: 'json_schema',\n json_schema: {\n schema: responseFormat.schema,\n strict: true,\n name: responseFormat.name ?? 'response',\n description: responseFormat.description,\n },\n }\n : { type: 'json_object' }\n : undefined,\n stop: stopSequences,\n seed,\n\n // openai specific settings:\n // TODO remove in next major version; we auto-map maxTokens now\n max_completion_tokens: providerMetadata?.openai?.maxCompletionTokens,\n store: providerMetadata?.openai?.store,\n metadata: providerMetadata?.openai?.metadata,\n prediction: providerMetadata?.openai?.prediction,\n reasoning_effort:\n providerMetadata?.openai?.reasoningEffort ??\n this.settings.reasoningEffort,\n\n // messages:\n messages: convertToOpenAIChatMessages({\n prompt,\n useLegacyFunctionCalling,\n systemMessageMode: getSystemMessageMode(this.modelId),\n }),\n };\n\n if (isReasoningModel(this.modelId)) {\n // remove unsupported settings for reasoning models\n // see https://platform.openai.com/docs/guides/reasoning#limitations\n if (baseArgs.temperature != null) {\n baseArgs.temperature = undefined;\n warnings.push({\n type: 'unsupported-setting',\n setting: 'temperature',\n details: 'temperature is not supported for reasoning models',\n });\n }\n if (baseArgs.top_p != null) {\n baseArgs.top_p = undefined;\n warnings.push({\n type: 'unsupported-setting',\n setting: 'topP',\n details: 'topP is not supported for reasoning models',\n });\n }\n if (baseArgs.frequency_penalty != null) {\n baseArgs.frequency_penalty = undefined;\n warnings.push({\n type: 'unsupported-setting',\n setting: 'frequencyPenalty',\n details: 'frequencyPenalty is not supported for reasoning models',\n });\n }\n if (baseArgs.presence_penalty != null) {\n baseArgs.presence_penalty = undefined;\n warnings.push({\n type: 'unsupported-setting',\n setting: 'presencePenalty',\n details: 'presencePenalty is not supported for reasoning models',\n });\n }\n if (baseArgs.logit_bias != null) {\n baseArgs.logit_bias = undefined;\n warnings.push({\n type: 'other',\n message: 'logitBias is not supported for reasoning models',\n });\n }\n if (baseArgs.logprobs != null) {\n baseArgs.logprobs = undefined;\n warnings.push({\n type: 'other',\n message: 'logprobs is not supported for reasoning models',\n });\n }\n if (baseArgs.top_logprobs != null) {\n baseArgs.top_logprobs = undefined;\n warnings.push({\n type: 'other',\n message: 'topLogprobs is not supported for reasoning models',\n });\n }\n\n // reasoning models use max_completion_tokens instead of max_tokens:\n if (baseArgs.max_tokens != null) {\n if (baseArgs.max_completion_tokens == null) {\n baseArgs.max_completion_tokens = baseArgs.max_tokens;\n }\n baseArgs.max_tokens = undefined;\n }\n }\n\n switch (type) {\n case 'regular': {\n const { tools, tool_choice, functions, function_call, toolWarnings } =\n prepareTools({\n mode,\n useLegacyFunctionCalling,\n structuredOutputs: this.supportsStructuredOutputs,\n });\n\n return {\n args: {\n ...baseArgs,\n tools,\n tool_choice,\n functions,\n function_call,\n },\n warnings: [...warnings, ...toolWarnings],\n };\n }\n\n case 'object-json': {\n return {\n args: {\n ...baseArgs,\n response_format:\n this.supportsStructuredOutputs && mode.schema != null\n ? {\n type: 'json_schema',\n json_schema: {\n schema: mode.schema,\n strict: true,\n name: mode.name ?? 'response',\n description: mode.description,\n },\n }\n : { type: 'json_object' },\n },\n warnings,\n };\n }\n\n case 'object-tool': {\n return {\n args: useLegacyFunctionCalling\n ? {\n ...baseArgs,\n function_call: {\n name: mode.tool.name,\n },\n functions: [\n {\n name: mode.tool.name,\n description: mode.tool.description,\n parameters: mode.tool.parameters,\n },\n ],\n }\n : {\n ...baseArgs,\n tool_choice: {\n type: 'function',\n function: { name: mode.tool.name },\n },\n tools: [\n {\n type: 'function',\n function: {\n name: mode.tool.name,\n description: mode.tool.description,\n parameters: mode.tool.parameters,\n strict: this.supportsStructuredOutputs ? true : undefined,\n },\n },\n ],\n },\n warnings,\n };\n }\n\n default: {\n const _exhaustiveCheck: never = type;\n throw new Error(`Unsupported type: ${_exhaustiveCheck}`);\n }\n }\n }\n\n async doGenerate(\n options: Parameters<LanguageModelV1['doGenerate']>[0],\n ): Promise<Awaited<ReturnType<LanguageModelV1['doGenerate']>>> {\n const { args: body, warnings } = this.getArgs(options);\n\n const {\n responseHeaders,\n value: response,\n rawValue: rawResponse,\n } = await postJsonToApi({\n url: this.config.url({\n path: '/chat/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body,\n failedResponseHandler: openaiFailedResponseHandler,\n successfulResponseHandler: createJsonResponseHandler(\n openaiChatResponseSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n const { messages: rawPrompt, ...rawSettings } = body;\n const choice = response.choices[0];\n\n // provider metadata:\n const completionTokenDetails = response.usage?.completion_tokens_details;\n const promptTokenDetails = response.usage?.prompt_tokens_details;\n const providerMetadata: LanguageModelV1ProviderMetadata = { openai: {} };\n if (completionTokenDetails?.reasoning_tokens != null) {\n providerMetadata.openai.reasoningTokens =\n completionTokenDetails?.reasoning_tokens;\n }\n if (completionTokenDetails?.accepted_prediction_tokens != null) {\n providerMetadata.openai.acceptedPredictionTokens =\n completionTokenDetails?.accepted_prediction_tokens;\n }\n if (completionTokenDetails?.rejected_prediction_tokens != null) {\n providerMetadata.openai.rejectedPredictionTokens =\n completionTokenDetails?.rejected_prediction_tokens;\n }\n if (promptTokenDetails?.cached_tokens != null) {\n providerMetadata.openai.cachedPromptTokens =\n promptTokenDetails?.cached_tokens;\n }\n\n return {\n text: choice.message.content ?? undefined,\n toolCalls:\n this.settings.useLegacyFunctionCalling && choice.message.function_call\n ? [\n {\n toolCallType: 'function',\n toolCallId: generateId(),\n toolName: choice.message.function_call.name,\n args: choice.message.function_call.arguments,\n },\n ]\n : choice.message.tool_calls?.map(toolCall => ({\n toolCallType: 'function',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n args: toolCall.function.arguments!,\n })),\n finishReason: mapOpenAIFinishReason(choice.finish_reason),\n usage: {\n promptTokens: response.usage?.prompt_tokens ?? NaN,\n completionTokens: response.usage?.completion_tokens ?? NaN,\n },\n rawCall: { rawPrompt, rawSettings },\n rawResponse: { headers: responseHeaders, body: rawResponse },\n request: { body: JSON.stringify(body) },\n response: getResponseMetadata(response),\n warnings,\n logprobs: mapOpenAIChatLogProbsOutput(choice.logprobs),\n providerMetadata,\n };\n }\n\n async doStream(\n options: Parameters<LanguageModelV1['doStream']>[0],\n ): Promise<Awaited<ReturnType<LanguageModelV1['doStream']>>> {\n if (this.settings.simulateStreaming) {\n const result = await this.doGenerate(options);\n\n const simulatedStream = new ReadableStream<LanguageModelV1StreamPart>({\n start(controller) {\n controller.enqueue({ type: 'response-metadata', ...result.response });\n if (result.text) {\n controller.enqueue({\n type: 'text-delta',\n textDelta: result.text,\n });\n }\n if (result.toolCalls) {\n for (const toolCall of result.toolCalls) {\n controller.enqueue({\n type: 'tool-call-delta',\n toolCallType: 'function',\n toolCallId: toolCall.toolCallId,\n toolName: toolCall.toolName,\n argsTextDelta: toolCall.args,\n });\n\n controller.enqueue({\n type: 'tool-call',\n ...toolCall,\n });\n }\n }\n controller.enqueue({\n type: 'finish',\n finishReason: result.finishReason,\n usage: result.usage,\n logprobs: result.logprobs,\n providerMetadata: result.providerMetadata,\n });\n controller.close();\n },\n });\n return {\n stream: simulatedStream,\n rawCall: result.rawCall,\n rawResponse: result.rawResponse,\n warnings: result.warnings,\n };\n }\n\n const { args, warnings } = this.getArgs(options);\n\n const body = {\n ...args,\n stream: true,\n\n // only include stream_options when in strict compatibility mode:\n stream_options:\n this.config.compatibility === 'strict'\n ? { include_usage: true }\n : undefined,\n };\n\n const { responseHeaders, value: response } = await postJsonToApi({\n url: this.config.url({\n path: '/chat/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body,\n failedResponseHandler: openaiFailedResponseHandler,\n successfulResponseHandler: createEventSourceResponseHandler(\n openaiChatChunkSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n const { messages: rawPrompt, ...rawSettings } = args;\n\n const toolCalls: Array<{\n id: string;\n type: 'function';\n function: {\n name: string;\n arguments: string;\n };\n hasFinished: boolean;\n }> = [];\n\n let finishReason: LanguageModelV1FinishReason = 'unknown';\n let usage: {\n promptTokens: number | undefined;\n completionTokens: number | undefined;\n } = {\n promptTokens: undefined,\n completionTokens: undefined,\n };\n let logprobs: LanguageModelV1LogProbs;\n let isFirstChunk = true;\n\n const { useLegacyFunctionCalling } = this.settings;\n\n const providerMetadata: LanguageModelV1ProviderMetadata = { openai: {} };\n\n return {\n stream: response.pipeThrough(\n new TransformStream<\n ParseResult<z.infer<typeof openaiChatChunkSchema>>,\n LanguageModelV1StreamPart\n >({\n transform(chunk, controller) {\n // handle failed chunk parsing / validation:\n if (!chunk.success) {\n finishReason = 'error';\n controller.enqueue({ type: 'error', error: chunk.error });\n return;\n }\n\n const value = chunk.value;\n\n // handle error chunks:\n if ('error' in value) {\n finishReason = 'error';\n controller.enqueue({ type: 'error', error: value.error });\n return;\n }\n\n if (isFirstChunk) {\n isFirstChunk = false;\n\n controller.enqueue({\n type: 'response-metadata',\n ...getResponseMetadata(value),\n });\n }\n\n if (value.usage != null) {\n const {\n prompt_tokens,\n completion_tokens,\n prompt_tokens_details,\n completion_tokens_details,\n } = value.usage;\n\n usage = {\n promptTokens: prompt_tokens ?? undefined,\n completionTokens: completion_tokens ?? undefined,\n };\n\n if (completion_tokens_details?.reasoning_tokens != null) {\n providerMetadata.openai.reasoningTokens =\n completion_tokens_details?.reasoning_tokens;\n }\n if (\n completion_tokens_details?.accepted_prediction_tokens != null\n ) {\n providerMetadata.openai.acceptedPredictionTokens =\n completion_tokens_details?.accepted_prediction_tokens;\n }\n if (\n completion_tokens_details?.rejected_prediction_tokens != null\n ) {\n providerMetadata.openai.rejectedPredictionTokens =\n completion_tokens_details?.rejected_prediction_tokens;\n }\n if (prompt_tokens_details?.cached_tokens != null) {\n providerMetadata.openai.cachedPromptTokens =\n prompt_tokens_details?.cached_tokens;\n }\n }\n\n const choice = value.choices[0];\n\n if (choice?.finish_reason != null) {\n finishReason = mapOpenAIFinishReason(choice.finish_reason);\n }\n\n if (choice?.delta == null) {\n return;\n }\n\n const delta = choice.delta;\n\n if (delta.content != null) {\n controller.enqueue({\n type: 'text-delta',\n textDelta: delta.content,\n });\n }\n\n const mappedLogprobs = mapOpenAIChatLogProbsOutput(\n choice?.logprobs,\n );\n if (mappedLogprobs?.length) {\n if (logprobs === undefined) logprobs = [];\n logprobs.push(...mappedLogprobs);\n }\n\n const mappedToolCalls: typeof delta.tool_calls =\n useLegacyFunctionCalling && delta.function_call != null\n ? [\n {\n type: 'function',\n id: generateId(),\n function: delta.function_call,\n index: 0,\n },\n ]\n : delta.tool_calls;\n\n if (mappedToolCalls != null) {\n for (const toolCallDelta of mappedToolCalls) {\n const index = toolCallDelta.index;\n\n // Tool call start. OpenAI returns all information except the arguments in the first chunk.\n if (toolCalls[index] == null) {\n if (toolCallDelta.type !== 'function') {\n throw new InvalidResponseDataError({\n data: toolCallDelta,\n message: `Expected 'function' type.`,\n });\n }\n\n if (toolCallDelta.id == null) {\n throw new InvalidResponseDataError({\n data: toolCallDelta,\n message: `Expected 'id' to be a string.`,\n });\n }\n\n if (toolCallDelta.function?.name == null) {\n throw new InvalidResponseDataError({\n data: toolCallDelta,\n message: `Expected 'function.name' to be a string.`,\n });\n }\n\n toolCalls[index] = {\n id: toolCallDelta.id,\n type: 'function',\n function: {\n name: toolCallDelta.function.name,\n arguments: toolCallDelta.function.arguments ?? '',\n },\n hasFinished: false,\n };\n\n const toolCall = toolCalls[index];\n\n if (\n toolCall.function?.name != null &&\n toolCall.function?.arguments != null\n ) {\n // send delta if the argument text has already started:\n if (toolCall.function.arguments.length > 0) {\n controller.enqueue({\n type: 'tool-call-delta',\n toolCallType: 'function',\n toolCallId: toolCall.id,\n toolName: toolCall.function.name,\n argsTextDelta: toolCall.function.arguments,\n });\n }\n\n // check if tool call is complete\n // (some providers send the full tool call in one chunk):\n if (isParsableJson(toolCall.function.arguments)) {\n controller.enqueue({\n type: 'tool-call',\n toolCallType: 'function',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n args: toolCall.function.arguments,\n });\n toolCall.hasFinished = true;\n }\n }\n\n continue;\n }\n\n // existing tool call, merge if not finished\n const toolCall = toolCalls[index];\n\n if (toolCall.hasFinished) {\n continue;\n }\n\n if (toolCallDelta.function?.arguments != null) {\n toolCall.function!.arguments +=\n toolCallDelta.function?.arguments ?? '';\n }\n\n // send delta\n controller.enqueue({\n type: 'tool-call-delta',\n toolCallType: 'function',\n toolCallId: toolCall.id,\n toolName: toolCall.function.name,\n argsTextDelta: toolCallDelta.function.arguments ?? '',\n });\n\n // check if tool call is complete\n if (\n toolCall.function?.name != null &&\n toolCall.function?.arguments != null &&\n isParsableJson(toolCall.function.arguments)\n ) {\n controller.enqueue({\n type: 'tool-call',\n toolCallType: 'function',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n args: toolCall.function.arguments,\n });\n toolCall.hasFinished = true;\n }\n }\n }\n },\n\n flush(controller) {\n controller.enqueue({\n type: 'finish',\n finishReason,\n logprobs,\n usage: {\n promptTokens: usage.promptTokens ?? NaN,\n completionTokens: usage.completionTokens ?? NaN,\n },\n ...(providerMetadata != null ? { providerMetadata } : {}),\n });\n },\n }),\n ),\n rawCall: { rawPrompt, rawSettings },\n rawResponse: { headers: responseHeaders },\n request: { body: JSON.stringify(body) },\n warnings,\n };\n }\n}\n\nconst openaiTokenUsageSchema = z\n .object({\n prompt_tokens: z.number().nullish(),\n completion_tokens: z.number().nullish(),\n prompt_tokens_details: z\n .object({\n cached_tokens: z.number().nullish(),\n })\n .nullish(),\n completion_tokens_details: z\n .object({\n reasoning_tokens: z.number().nullish(),\n accepted_prediction_tokens: z.number().nullish(),\n rejected_prediction_tokens: z.number().nullish(),\n })\n .nullish(),\n })\n .nullish();\n\n// limited version of the schema, focussed on what is needed for the implementation\n// this approach limits breakages when the API changes and increases efficiency\nconst openaiChatResponseSchema = z.object({\n id: z.string().nullish(),\n created: z.number().nullish(),\n model: z.string().nullish(),\n choices: z.array(\n z.object({\n message: z.object({\n role: z.literal('assistant').nullish(),\n content: z.string().nullish(),\n function_call: z\n .object({\n arguments: z.string(),\n name: z.string(),\n })\n .nullish(),\n tool_calls: z\n .array(\n z.object({\n id: z.string().nullish(),\n type: z.literal('function'),\n function: z.object({\n name: z.string(),\n arguments: z.string(),\n }),\n }),\n )\n .nullish(),\n }),\n index: z.number(),\n logprobs: z\n .object({\n content: z\n .array(\n z.object({\n token: z.string(),\n logprob: z.number(),\n top_logprobs: z.array(\n z.object({\n token: z.string(),\n logprob: z.number(),\n }),\n ),\n }),\n )\n .nullable(),\n })\n .nullish(),\n finish_reason: z.string().nullish(),\n }),\n ),\n usage: openaiTokenUsageSchema,\n});\n\n// limited version of the schema, focussed on what is needed for the implementation\n// this approach limits breakages when the API changes and increases efficiency\nconst openaiChatChunkSchema = z.union([\n z.object({\n id: z.string().nullish(),\n created: z.number().nullish(),\n model: z.string().nullish(),\n choices: z.array(\n z.object({\n delta: z\n .object({\n role: z.enum(['assistant']).nullish(),\n content: z.string().nullish(),\n function_call: z\n .object({\n name: z.string().optional(),\n arguments: z.string().optional(),\n })\n .nullish(),\n tool_calls: z\n .array(\n z.object({\n index: z.number(),\n id: z.string().nullish(),\n type: z.literal('function').optional(),\n function: z.object({\n name: z.string().nullish(),\n arguments: z.string().nullish(),\n }),\n }),\n )\n .nullish(),\n })\n .nullish(),\n logprobs: z\n .object({\n content: z\n .array(\n z.object({\n token: z.string(),\n logprob: z.number(),\n top_logprobs: z.array(\n z.object({\n token: z.string(),\n logprob: z.number(),\n }),\n ),\n }),\n )\n .nullable(),\n })\n .nullish(),\n finish_reason: z.string().nullable().optional(),\n index: z.number(),\n }),\n ),\n usage: openaiTokenUsageSchema,\n }),\n openaiErrorDataSchema,\n]);\n\nfunction isReasoningModel(modelId: string) {\n return (\n modelId === 'o1' ||\n modelId.startsWith('o1-') ||\n modelId === 'o3' ||\n modelId.startsWith('o3-')\n );\n}\n\nfunction isAudioModel(modelId: string) {\n return modelId.startsWith('gpt-4o-audio-preview');\n}\n\nfunction getSystemMessageMode(modelId: string) {\n if (!isReasoningModel(modelId)) {\n return 'system';\n }\n\n return (\n reasoningModels[modelId as keyof typeof reasoningModels]\n ?.systemMessageMode ?? 'developer'\n );\n}\n\nconst reasoningModels = {\n 'o1-mini': {\n systemMessageMode: 'remove',\n },\n 'o1-mini-2024-09-12': {\n systemMessageMode: 'remove',\n },\n 'o1-preview': {\n systemMessageMode: 'remove',\n },\n 'o1-preview-2024-09-12': {\n systemMessageMode: 'remove',\n },\n 'o3-mini': {\n systemMessageMode: 'developer',\n },\n 'o3-mini-2025-01-31': {\n systemMessageMode: 'developer',\n },\n} as const;\n","import {\n LanguageModelV1Prompt,\n UnsupportedFunctionalityError,\n} from '@ai-toolkit/provider';\nimport { convertUint8ArrayToBase64 } from '@ai-toolkit/provider-utils';\nimport { OpenAIChatPrompt } from './openai-chat-prompt';\n\nexport function convertToOpenAIChatMessages({\n prompt,\n useLegacyFunctionCalling = false,\n systemMessageMode = 'system',\n}: {\n prompt: LanguageModelV1Prompt;\n useLegacyFunctionCalling?: boolean;\n systemMessageMode?: 'system' | 'developer' | 'remove';\n}): OpenAIChatPrompt {\n const messages: OpenAIChatPrompt = [];\n\n for (const { role, content } of prompt) {\n switch (role) {\n case 'system': {\n switch (systemMessageMode) {\n case 'system': {\n messages.push({ role: 'system', content });\n break;\n }\n case 'developer': {\n messages.push({ role: 'developer', content });\n break;\n }\n case 'remove': {\n break;\n }\n default: {\n const _exhaustiveCheck: never = systemMessageMode;\n throw new Error(\n `Unsupported system message mode: ${_exhaustiveCheck}`,\n );\n }\n }\n break;\n }\n\n case 'user': {\n if (content.length === 1 && content[0].type === 'text') {\n messages.push({ role: 'user', content: content[0].text });\n break;\n }\n\n messages.push({\n role: 'user',\n content: content.map(part => {\n switch (part.type) {\n case 'text': {\n return { type: 'text', text: part.text };\n }\n case 'image': {\n return {\n type: 'image_url',\n image_url: {\n url:\n part.image instanceof URL\n ? part.image.toString()\n : `data:${\n part.mimeType ?? 'image/jpeg'\n };base64,${convertUint8ArrayToBase64(part.image)}`,\n\n // OpenAI specific extension: image detail\n detail: part.providerMetadata?.openai?.imageDetail,\n },\n };\n }\n case 'file': {\n if (part.data instanceof URL) {\n throw new UnsupportedFunctionalityError({\n functionality:\n \"'File content parts with URL data' functionality not supported.\",\n });\n }\n\n switch (part.mimeType) {\n case 'audio/wav': {\n return {\n type: 'input_audio',\n input_audio: { data: part.data, format: 'wav' },\n };\n }\n case 'audio/mp3':\n case 'audio/mpeg': {\n return {\n type: 'input_audio',\n input_audio: { data: part.data, format: 'mp3' },\n };\n }\n\n default: {\n throw new UnsupportedFunctionalityError({\n functionality: `File content part type ${part.mimeType} in user messages`,\n });\n }\n }\n }\n }\n }),\n });\n\n break;\n }\n\n case 'assistant': {\n let text = '';\n const toolCalls: Array<{\n id: string;\n type: 'function';\n function: { name: string; arguments: string };\n }> = [];\n\n for (const part of content) {\n switch (part.type) {\n case 'text': {\n text += part.text;\n break;\n }\n case 'redacted-reasoning':\n case 'reasoning': {\n break; // ignored\n }\n case 'tool-call': {\n toolCalls.push({\n id: part.toolCallId,\n type: 'function',\n function: {\n name: part.toolName,\n arguments: JSON.stringify(part.args),\n },\n });\n break;\n }\n default: {\n const _exhaustiveCheck: never = part;\n throw new Error(`Unsupported part: ${_exhaustiveCheck}`);\n }\n }\n }\n\n if (useLegacyFunctionCalling) {\n if (toolCalls.length > 1) {\n throw new UnsupportedFunctionalityError({\n functionality:\n 'useLegacyFunctionCalling with multiple tool calls in one message',\n });\n }\n\n messages.push({\n role: 'assistant',\n content: text,\n function_call:\n toolCalls.length > 0 ? toolCalls[0].function : undefined,\n });\n } else {\n messages.push({\n role: 'assistant',\n content: text,\n tool_calls: toolCalls.length > 0 ? toolCalls : undefined,\n });\n }\n\n break;\n }\n\n case 'tool': {\n for (const toolResponse of content) {\n if (useLegacyFunctionCalling) {\n messages.push({\n role: 'function',\n name: toolResponse.toolName,\n content: JSON.stringify(toolResponse.result),\n });\n } else {\n messages.push({\n role: 'tool',\n tool_call_id: toolResponse.toolCallId,\n content: JSON.stringify(toolResponse.result),\n });\n }\n }\n break;\n }\n\n default: {\n const _exhaustiveCheck: never = role;\n throw new Error(`Unsupported role: ${_exhaustiveCheck}`);\n }\n }\n }\n\n return messages;\n}\n","import { LanguageModelV1LogProbs } from '@ai-toolkit/provider';\n\ntype OpenAIChatLogProbs = {\n content:\n | {\n token: string;\n logprob: number;\n top_logprobs:\n | {\n token: string;\n logprob: number;\n }[]\n | null;\n }[]\n | null;\n};\n\nexport function mapOpenAIChatLogProbsOutput(\n logprobs: OpenAIChatLogProbs | null | undefined,\n): LanguageModelV1LogProbs | undefined {\n return (\n logprobs?.content?.map(({ token, logprob, top_logprobs }) => ({\n token,\n logprob,\n topLogprobs: top_logprobs\n ? top_logprobs.map(({ token, logprob }) => ({\n token,\n logprob,\n }))\n : [],\n })) ?? undefined\n );\n}\n","import { LanguageModelV1FinishReason } from '@ai-toolkit/provider';\n\nexport function mapOpenAIFinishReason(\n finishReason: string | null | undefined,\n): LanguageModelV1FinishReason {\n switch (finishReason) {\n case 'stop':\n return 'stop';\n case 'length':\n return 'length';\n case 'content_filter':\n return 'content-filter';\n case 'function_call':\n case 'tool_calls':\n return 'tool-calls';\n default:\n return 'unknown';\n }\n}\n","import { z } from 'zod';\nimport { createJsonErrorResponseHandler } from '@ai-toolkit/provider-utils';\n\nexport const openaiErrorDataSchema = z.object({\n error: z.object({\n message: z.string(),\n\n // The additional information below is handled loosely to support\n // OpenAI-compatible providers that have slightly different error\n // responses:\n type: z.string().nullish(),\n param: z.any().nullish(),\n code: z.union([z.string(), z.number()]).nullish(),\n }),\n});\n\nexport type OpenAIErrorData = z.infer<typeof openaiErrorDataSchema>;\n\nexport const openaiFailedResponseHandler = createJsonErrorResponseHandler({\n errorSchema: openaiErrorDataSchema,\n errorToMessage: data => data.error.message,\n});\n","export function getResponseMetadata({\n id,\n model,\n created,\n}: {\n id?: string | undefined | null;\n created?: number | undefined | null;\n model?: string | undefined | null;\n}) {\n return {\n id: id ?? undefined,\n modelId: model ?? undefined,\n timestamp: created != null ? new Date(created * 1000) : undefined,\n };\n}\n","import {\n JSONSchema7,\n LanguageModelV1,\n LanguageModelV1CallWarning,\n UnsupportedFunctionalityError,\n} from '@ai-toolkit/provider';\n\nexport function prepareTools({\n mode,\n useLegacyFunctionCalling = false,\n structuredOutputs,\n}: {\n mode: Parameters<LanguageModelV1['doGenerate']>[0]['mode'] & {\n type: 'regular';\n };\n useLegacyFunctionCalling: boolean | undefined;\n structuredOutputs: boolean;\n}): {\n tools?: {\n type: 'function';\n function: {\n name: string;\n description: string | undefined;\n parameters: JSONSchema7;\n strict?: boolean;\n };\n }[];\n tool_choice?:\n | 'auto'\n | 'none'\n | 'required'\n | { type: 'function'; function: { name: string } };\n\n // legacy support\n functions?: {\n name: string;\n description: string | undefined;\n parameters: JSONSchema7;\n }[];\n function_call?: { name: string };\n\n toolWarnings: LanguageModelV1CallWarning[];\n} {\n // when the tools array is empty, change it to undefined to prevent errors:\n const tools = mode.tools?.length ? mode.tools : undefined;\n\n const toolWarnings: LanguageModelV1CallWarning[] = [];\n\n if (tools == null) {\n return { tools: undefined, tool_choice: undefined, toolWarnings };\n }\n\n const toolChoice = mode.toolChoice;\n\n if (useLegacyFunctionCalling) {\n const openaiFunctions: Array<{\n name: string;\n description: string | undefined;\n parameters: JSONSchema7;\n }> = [];\n\n for (const tool of tools) {\n if (tool.type === 'provider-defined') {\n toolWarnings.push({ type: 'unsupported-tool', tool });\n } else {\n openaiFunctions.push({\n name: tool.name,\n description: tool.description,\n parameters: tool.parameters,\n });\n }\n }\n\n if (toolChoice == null) {\n return {\n functions: openaiFunctions,\n function_call: undefined,\n toolWarnings,\n };\n }\n\n const type = toolChoice.type;\n\n switch (type) {\n case 'auto':\n case 'none':\n case undefined:\n return {\n functions: openaiFunctions,\n function_call: undefined,\n toolWarnings,\n };\n case 'required':\n throw new UnsupportedFunctionalityError({\n functionality: 'useLegacyFunctionCalling and toolChoice: required',\n });\n default:\n return {\n functions: openaiFunctions,\n function_call: { name: toolChoice.toolName },\n toolWarnings,\n };\n }\n }\n\n const openaiTools: Array<{\n type: 'function';\n function: {\n name: string;\n description: string | undefined;\n parameters: JSONSchema7;\n strict: boolean | undefined;\n };\n }> = [];\n\n for (const tool of tools) {\n if (tool.type === 'provider-defined') {\n toolWarnings.push({ type: 'unsupported-tool', tool });\n } else {\n openaiTools.push({\n type: 'function',\n function: {\n name: tool.name,\n description: tool.description,\n parameters: tool.parameters,\n strict: structuredOutputs ? true : undefined,\n },\n });\n }\n }\n\n if (toolChoice == null) {\n return { tools: openaiTools, tool_choice: undefined, toolWarnings };\n }\n\n const type = toolChoice.type;\n\n switch (type) {\n case 'auto':\n case 'none':\n case 'required':\n return { tools: openaiTools, tool_choice: type, toolWarnings };\n case 'tool':\n return {\n tools: openaiTools,\n tool_choice: {\n type: 'function',\n function: {\n name: toolChoice.toolName,\n },\n },\n toolWarnings,\n };\n default: {\n const _exhaustiveCheck: never = type;\n throw new UnsupportedFunctionalityError({\n functionality: `Unsupported tool choice type: ${_exhaustiveCheck}`,\n });\n }\n }\n}\n","import {\n LanguageModelV1,\n LanguageModelV1CallWarning,\n LanguageModelV1FinishReason,\n LanguageModelV1LogProbs,\n LanguageModelV1StreamPart,\n UnsupportedFunctionalityError,\n} from '@ai-toolkit/provider';\nimport {\n FetchFunction,\n ParseResult,\n combineHeaders,\n createEventSourceResponseHandler,\n createJsonResponseHandler,\n postJsonToApi,\n} from '@ai-toolkit/provider-utils';\nimport { z } from 'zod';\nimport { convertToOpenAICompletionPrompt } from './convert-to-openai-completion-prompt';\nimport { mapOpenAICompletionLogProbs } from './map-openai-completion-logprobs';\nimport { mapOpenAIFinishReason } from './map-openai-finish-reason';\nimport {\n OpenAICompletionModelId,\n OpenAICompletionSettings,\n} from './openai-completion-settings';\nimport {\n openaiErrorDataSchema,\n openaiFailedResponseHandler,\n} from './openai-error';\nimport { getResponseMetadata } from './get-response-metadata';\n\ntype OpenAICompletionConfig = {\n provider: string;\n compatibility: 'strict' | 'compatible';\n headers: () => Record<string, string | undefined>;\n url: (options: { modelId: string; path: string }) => string;\n fetch?: FetchFunction;\n};\n\nexport class OpenAICompletionLanguageModel implements LanguageModelV1 {\n readonly specificationVersion = 'v1';\n readonly defaultObjectGenerationMode = undefined;\n\n readonly modelId: OpenAICompletionModelId;\n readonly settings: OpenAICompletionSettings;\n\n private readonly config: OpenAICompletionConfig;\n\n constructor(\n modelId: OpenAICompletionModelId,\n settings: OpenAICompletionSettings,\n config: OpenAICompletionConfig,\n ) {\n this.modelId = modelId;\n this.settings = settings;\n this.config = config;\n }\n\n get provider(): string {\n return this.config.provider;\n }\n\n private getArgs({\n mode,\n inputFormat,\n prompt,\n maxTokens,\n temperature,\n topP,\n topK,\n frequencyPenalty,\n presencePenalty,\n stopSequences: userStopSequences,\n responseFormat,\n seed,\n }: Parameters<LanguageModelV1['doGenerate']>[0]) {\n const type = mode.type;\n\n const warnings: LanguageModelV1CallWarning[] = [];\n\n if (topK != null) {\n warnings.push({\n type: 'unsupported-setting',\n setting: 'topK',\n });\n }\n\n if (responseFormat != null && responseFormat.type !== 'text') {\n warnings.push({\n type: 'unsupported-setting',\n setting: 'responseFormat',\n details: 'JSON response format is not supported.',\n });\n }\n\n const { prompt: completionPrompt, stopSequences } =\n convertToOpenAICompletionPrompt({ prompt, inputFormat });\n\n const stop = [...(stopSequences ?? []), ...(userStopSequences ?? [])];\n\n const baseArgs = {\n // model id:\n model: this.modelId,\n\n // model specific settings:\n echo: this.settings.echo,\n logit_bias: this.settings.logitBias,\n logprobs:\n typeof this.settings.logprobs === 'number'\n ? this.settings.logprobs\n : typeof this.settings.logprobs === 'boolean'\n ? this.settings.logprobs\n ? 0\n : undefined\n : undefined,\n suffix: this.settings.suffix,\n user: this.settings.user,\n\n // standardized settings:\n max_tokens: maxTokens,\n temperature,\n top_p: topP,\n frequency_penalty: frequencyPenalty,\n presence_penalty: presencePenalty,\n seed,\n\n // prompt:\n prompt: completionPrompt,\n\n // stop sequences:\n stop: stop.length > 0 ? stop : undefined,\n };\n\n switch (type) {\n case 'regular': {\n if (mode.tools?.length) {\n throw new UnsupportedFunctionalityError({\n functionality: 'tools',\n });\n }\n\n if (mode.toolChoice) {\n throw new UnsupportedFunctionalityError({\n functionality: 'toolChoice',\n });\n }\n\n return { args: baseArgs, warnings };\n }\n\n case 'object-json': {\n throw new UnsupportedFunctionalityError({\n functionality: 'object-json mode',\n });\n }\n\n case 'object-tool': {\n throw new UnsupportedFunctionalityError({\n functionality: 'object-tool mode',\n });\n }\n\n default: {\n const _exhaustiveCheck: never = type;\n throw new Error(`Unsupported type: ${_exhaustiveCheck}`);\n }\n }\n }\n\n async doGenerate(\n options: Parameters<LanguageModelV1['doGenerate']>[0],\n ): Promise<Awaited<ReturnType<LanguageModelV1['doGenerate']>>> {\n const { args, warnings } = this.getArgs(options);\n\n const {\n responseHeaders,\n value: response,\n rawValue: rawResponse,\n } = await postJsonToApi({\n url: this.config.url({\n path: '/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body: args,\n failedResponseHandler: openaiFailedResponseHandler,\n successfulResponseHandler: createJsonResponseHandler(\n openaiCompletionResponseSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n const { prompt: rawPrompt, ...rawSettings } = args;\n const choice = response.choices[0];\n\n return {\n text: choice.text,\n usage: {\n promptTokens: response.usage.prompt_tokens,\n completionTokens: response.usage.completion_tokens,\n },\n finishReason: mapOpenAIFinishReason(choice.finish_reason),\n logprobs: mapOpenAICompletionLogProbs(choice.logprobs),\n rawCall: { rawPrompt, rawSettings },\n rawResponse: { headers: responseHeaders, body: rawResponse },\n response: getResponseMetadata(response),\n warnings,\n request: { body: JSON.stringify(args) },\n };\n }\n\n async doStream(\n options: Parameters<LanguageModelV1['doStream']>[0],\n ): Promise<Awaited<ReturnType<LanguageModelV1['doStream']>>> {\n const { args, warnings } = this.