UNPKG

@ai-sdk/openai

Version:

The **[OpenAI provider](https://ai-sdk.dev/providers/ai-sdk-providers/openai)** for the [AI SDK](https://ai-sdk.dev/docs) contains language model support for the OpenAI chat and completion APIs and embedding model support for the OpenAI embeddings API.

1,353 lines (1,329 loc) 226 kB
"use strict"; var __defProp = Object.defineProperty; var __getOwnPropDesc = Object.getOwnPropertyDescriptor; var __getOwnPropNames = Object.getOwnPropertyNames; var __hasOwnProp = Object.prototype.hasOwnProperty; var __export = (target, all) => { for (var name in all) __defProp(target, name, { get: all[name], enumerable: true }); }; var __copyProps = (to, from, except, desc) => { if (from && typeof from === "object" || typeof from === "function") { for (let key of __getOwnPropNames(from)) if (!__hasOwnProp.call(to, key) && key !== except) __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable }); } return to; }; var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod); // src/index.ts var src_exports = {}; __export(src_exports, { VERSION: () => VERSION, createOpenAI: () => createOpenAI, openai: () => openai }); module.exports = __toCommonJS(src_exports); // src/openai-provider.ts var import_provider_utils33 = require("@ai-sdk/provider-utils"); // src/chat/openai-chat-language-model.ts var import_provider3 = require("@ai-sdk/provider"); var import_provider_utils5 = require("@ai-sdk/provider-utils"); // src/openai-error.ts var import_v4 = require("zod/v4"); var import_provider_utils = require("@ai-sdk/provider-utils"); var openaiErrorDataSchema = import_v4.z.object({ error: import_v4.z.object({ message: import_v4.z.string(), // The additional information below is handled loosely to support // OpenAI-compatible providers that have slightly different error // responses: type: import_v4.z.string().nullish(), param: import_v4.z.any().nullish(), code: import_v4.z.union([import_v4.z.string(), import_v4.z.number()]).nullish() }) }); var openaiFailedResponseHandler = (0, import_provider_utils.createJsonErrorResponseHandler)({ errorSchema: openaiErrorDataSchema, errorToMessage: (data) => data.error.message }); // src/openai-language-model-capabilities.ts function getOpenAILanguageModelCapabilities(modelId) { const supportsFlexProcessing = modelId.startsWith("o3") || modelId.startsWith("o4-mini") || modelId.startsWith("gpt-5") && !modelId.startsWith("gpt-5-chat"); const supportsPriorityProcessing = modelId.startsWith("gpt-4") || modelId.startsWith("gpt-5-mini") || modelId.startsWith("gpt-5") && !modelId.startsWith("gpt-5-nano") && !modelId.startsWith("gpt-5-chat") || modelId.startsWith("o3") || modelId.startsWith("o4-mini"); const isReasoningModel = modelId.startsWith("o1") || modelId.startsWith("o3") || modelId.startsWith("o4-mini") || modelId.startsWith("codex-mini") || modelId.startsWith("computer-use-preview") || modelId.startsWith("gpt-5") && !modelId.startsWith("gpt-5-chat"); const supportsNonReasoningParameters = modelId.startsWith("gpt-5.1") || modelId.startsWith("gpt-5.2"); const systemMessageMode = isReasoningModel ? "developer" : "system"; return { supportsFlexProcessing, supportsPriorityProcessing, isReasoningModel, systemMessageMode, supportsNonReasoningParameters }; } // src/chat/convert-openai-chat-usage.ts function convertOpenAIChatUsage(usage) { var _a, _b, _c, _d, _e, _f; if (usage == null) { return { inputTokens: { total: void 0, noCache: void 0, cacheRead: void 0, cacheWrite: void 0 }, outputTokens: { total: void 0, text: void 0, reasoning: void 0 }, raw: void 0 }; } const promptTokens = (_a = usage.prompt_tokens) != null ? _a : 0; const completionTokens = (_b = usage.completion_tokens) != null ? _b : 0; const cachedTokens = (_d = (_c = usage.prompt_tokens_details) == null ? void 0 : _c.cached_tokens) != null ? _d : 0; const reasoningTokens = (_f = (_e = usage.completion_tokens_details) == null ? void 0 : _e.reasoning_tokens) != null ? _f : 0; return { inputTokens: { total: promptTokens, noCache: promptTokens - cachedTokens, cacheRead: cachedTokens, cacheWrite: void 0 }, outputTokens: { total: completionTokens, text: completionTokens - reasoningTokens, reasoning: reasoningTokens }, raw: usage }; } // src/chat/convert-to-openai-chat-messages.ts var import_provider = require("@ai-sdk/provider"); var import_provider_utils2 = require("@ai-sdk/provider-utils"); function convertToOpenAIChatMessages({ prompt, systemMessageMode = "system" }) { var _a; const messages = []; const warnings = []; for (const { role, content } of prompt) { switch (role) { case "system": { switch (systemMessageMode) { case "system": { messages.push({ role: "system", content }); break; } case "developer": { messages.push({ role: "developer", content }); break; } case "remove": { warnings.push({ type: "other", message: "system messages are removed for this model" }); break; } default: { const _exhaustiveCheck = systemMessageMode; throw new Error( `Unsupported system message mode: ${_exhaustiveCheck}` ); } } break; } case "user": { if (content.length === 1 && content[0].type === "text") { messages.push({ role: "user", content: content[0].text }); break; } messages.push({ role: "user", content: content.map((part, index) => { var _a2, _b, _c; switch (part.type) { case "text": { return { type: "text", text: part.text }; } case "file": { if (part.mediaType.startsWith("image/")) { const mediaType = part.mediaType === "image/*" ? "image/jpeg" : part.mediaType; return { type: "image_url", image_url: { url: part.data instanceof URL ? part.data.toString() : `data:${mediaType};base64,${(0, import_provider_utils2.convertToBase64)(part.data)}`, // OpenAI specific extension: image detail detail: (_b = (_a2 = part.providerOptions) == null ? void 0 : _a2.openai) == null ? void 0 : _b.imageDetail } }; } else if (part.mediaType.startsWith("audio/")) { if (part.data instanceof URL) { throw new import_provider.UnsupportedFunctionalityError({ functionality: "audio file parts with URLs" }); } switch (part.mediaType) { case "audio/wav": { return { type: "input_audio", input_audio: { data: (0, import_provider_utils2.convertToBase64)(part.data), format: "wav" } }; } case "audio/mp3": case "audio/mpeg": { return { type: "input_audio", input_audio: { data: (0, import_provider_utils2.convertToBase64)(part.data), format: "mp3" } }; } default: { throw new import_provider.UnsupportedFunctionalityError({ functionality: `audio content parts with media type ${part.mediaType}` }); } } } else if (part.mediaType === "application/pdf") { if (part.data instanceof URL) { throw new import_provider.UnsupportedFunctionalityError({ functionality: "PDF file parts with URLs" }); } return { type: "file", file: typeof part.data === "string" && part.data.startsWith("file-") ? { file_id: part.data } : { filename: (_c = part.filename) != null ? _c : `part-${index}.pdf`, file_data: `data:application/pdf;base64,${(0, import_provider_utils2.convertToBase64)(part.data)}` } }; } else { throw new import_provider.UnsupportedFunctionalityError({ functionality: `file part media type ${part.mediaType}` }); } } } }) }); break; } case "assistant": { let text = ""; const toolCalls = []; for (const part of content) { switch (part.type) { case "text": { text += part.text; break; } case "tool-call": { toolCalls.push({ id: part.toolCallId, type: "function", function: { name: part.toolName, arguments: JSON.stringify(part.input) } }); break; } } } messages.push({ role: "assistant", content: text, tool_calls: toolCalls.length > 0 ? toolCalls : void 0 }); break; } case "tool": { for (const toolResponse of content) { if (toolResponse.type === "tool-approval-response") { continue; } const output = toolResponse.output; let contentValue; switch (output.type) { case "text": case "error-text": contentValue = output.value; break; case "execution-denied": contentValue = (_a = output.reason) != null ? _a : "Tool execution denied."; break; case "content": case "json": case "error-json": contentValue = JSON.stringify(output.value); break; } messages.push({ role: "tool", tool_call_id: toolResponse.toolCallId, content: contentValue }); } break; } default: { const _exhaustiveCheck = role; throw new Error(`Unsupported role: ${_exhaustiveCheck}`); } } } return { messages, warnings }; } // src/chat/get-response-metadata.ts function getResponseMetadata({ id, model, created }) { return { id: id != null ? id : void 0, modelId: model != null ? model : void 0, timestamp: created ? new Date(created * 1e3) : void 0 }; } // src/chat/map-openai-finish-reason.ts function mapOpenAIFinishReason(finishReason) { switch (finishReason) { case "stop": return "stop"; case "length": return "length"; case "content_filter": return "content-filter"; case "function_call": case "tool_calls": return "tool-calls"; default: return "other"; } } // src/chat/openai-chat-api.ts var import_provider_utils3 = require("@ai-sdk/provider-utils"); var import_v42 = require("zod/v4"); var openaiChatResponseSchema = (0, import_provider_utils3.lazySchema)( () => (0, import_provider_utils3.zodSchema)( import_v42.z.object({ id: import_v42.z.string().nullish(), created: import_v42.z.number().nullish(), model: import_v42.z.string().nullish(), choices: import_v42.z.array( import_v42.z.object({ message: import_v42.z.object({ role: import_v42.z.literal("assistant").nullish(), content: import_v42.z.string().nullish(), tool_calls: import_v42.z.array( import_v42.z.object({ id: import_v42.z.string().nullish(), type: import_v42.z.literal("function"), function: import_v42.z.object({ name: import_v42.z.string(), arguments: import_v42.z.string() }) }) ).nullish(), annotations: import_v42.z.array( import_v42.z.object({ type: import_v42.z.literal("url_citation"), url_citation: import_v42.z.object({ start_index: import_v42.z.number(), end_index: import_v42.z.number(), url: import_v42.z.string(), title: import_v42.z.string() }) }) ).nullish() }), index: import_v42.z.number(), logprobs: import_v42.z.object({ content: import_v42.z.array( import_v42.z.object({ token: import_v42.z.string(), logprob: import_v42.z.number(), top_logprobs: import_v42.z.array( import_v42.z.object({ token: import_v42.z.string(), logprob: import_v42.z.number() }) ) }) ).nullish() }).nullish(), finish_reason: import_v42.z.string().nullish() }) ), usage: import_v42.z.object({ prompt_tokens: import_v42.z.number().nullish(), completion_tokens: import_v42.z.number().nullish(), total_tokens: import_v42.z.number().nullish(), prompt_tokens_details: import_v42.z.object({ cached_tokens: import_v42.z.number().nullish() }).nullish(), completion_tokens_details: import_v42.z.object({ reasoning_tokens: import_v42.z.number().nullish(), accepted_prediction_tokens: import_v42.z.number().nullish(), rejected_prediction_tokens: import_v42.z.number().nullish() }).nullish() }).nullish() }) ) ); var openaiChatChunkSchema = (0, import_provider_utils3.lazySchema)( () => (0, import_provider_utils3.zodSchema)( import_v42.z.union([ import_v42.z.object({ id: import_v42.z.string().nullish(), created: import_v42.z.number().nullish(), model: import_v42.z.string().nullish(), choices: import_v42.z.array( import_v42.z.object({ delta: import_v42.z.object({ role: import_v42.z.enum(["assistant"]).nullish(), content: import_v42.z.string().nullish(), tool_calls: import_v42.z.array( import_v42.z.object({ index: import_v42.z.number(), id: import_v42.z.string().nullish(), type: import_v42.z.literal("function").nullish(), function: import_v42.z.object({ name: import_v42.z.string().nullish(), arguments: import_v42.z.string().nullish() }) }) ).nullish(), annotations: import_v42.z.array( import_v42.z.object({ type: import_v42.z.literal("url_citation"), url_citation: import_v42.z.object({ start_index: import_v42.z.number(), end_index: import_v42.z.number(), url: import_v42.z.string(), title: import_v42.z.string() }) }) ).nullish() }).nullish(), logprobs: import_v42.z.object({ content: import_v42.z.array( import_v42.z.object({ token: import_v42.z.string(), logprob: import_v42.z.number(), top_logprobs: import_v42.z.array( import_v42.z.object({ token: import_v42.z.string(), logprob: import_v42.z.number() }) ) }) ).nullish() }).nullish(), finish_reason: import_v42.z.string().nullish(), index: import_v42.z.number() }) ), usage: import_v42.z.object({ prompt_tokens: import_v42.z.number().nullish(), completion_tokens: import_v42.z.number().nullish(), total_tokens: import_v42.z.number().nullish(), prompt_tokens_details: import_v42.z.object({ cached_tokens: import_v42.z.number().nullish() }).nullish(), completion_tokens_details: import_v42.z.object({ reasoning_tokens: import_v42.z.number().nullish(), accepted_prediction_tokens: import_v42.z.number().nullish(), rejected_prediction_tokens: import_v42.z.number().nullish() }).nullish() }).nullish() }), openaiErrorDataSchema ]) ) ); // src/chat/openai-chat-options.ts var import_provider_utils4 = require("@ai-sdk/provider-utils"); var import_v43 = require("zod/v4"); var openaiChatLanguageModelOptions = (0, import_provider_utils4.lazySchema)( () => (0, import_provider_utils4.zodSchema)( import_v43.z.object({ /** * Modify the likelihood of specified tokens appearing in the completion. * * Accepts a JSON object that maps tokens (specified by their token ID in * the GPT tokenizer) to an associated bias value from -100 to 100. */ logitBias: import_v43.z.record(import_v43.z.coerce.number(), import_v43.z.number()).optional(), /** * Return the log probabilities of the tokens. * * Setting to true will return the log probabilities of the tokens that * were generated. * * Setting to a number will return the log probabilities of the top n * tokens that were generated. */ logprobs: import_v43.z.union([import_v43.z.boolean(), import_v43.z.number()]).optional(), /** * Whether to enable parallel function calling during tool use. Default to true. */ parallelToolCalls: import_v43.z.boolean().optional(), /** * A unique identifier representing your end-user, which can help OpenAI to * monitor and detect abuse. */ user: import_v43.z.string().optional(), /** * Reasoning effort for reasoning models. Defaults to `medium`. */ reasoningEffort: import_v43.z.enum(["none", "minimal", "low", "medium", "high", "xhigh"]).optional(), /** * Maximum number of completion tokens to generate. Useful for reasoning models. */ maxCompletionTokens: import_v43.z.number().optional(), /** * Whether to enable persistence in responses API. */ store: import_v43.z.boolean().optional(), /** * Metadata to associate with the request. */ metadata: import_v43.z.record(import_v43.z.string().max(64), import_v43.z.string().max(512)).optional(), /** * Parameters for prediction mode. */ prediction: import_v43.z.record(import_v43.z.string(), import_v43.z.any()).optional(), /** * Service tier for the request. * - 'auto': Default service tier. The request will be processed with the service tier configured in the * Project settings. Unless otherwise configured, the Project will use 'default'. * - 'flex': 50% cheaper processing at the cost of increased latency. Only available for o3 and o4-mini models. * - 'priority': Higher-speed processing with predictably low latency at premium cost. Available for Enterprise customers. * - 'default': The request will be processed with the standard pricing and performance for the selected model. * * @default 'auto' */ serviceTier: import_v43.z.enum(["auto", "flex", "priority", "default"]).optional(), /** * Whether to use strict JSON schema validation. * * @default true */ strictJsonSchema: import_v43.z.boolean().optional(), /** * Controls the verbosity of the model's responses. * Lower values will result in more concise responses, while higher values will result in more verbose responses. */ textVerbosity: import_v43.z.enum(["low", "medium", "high"]).optional(), /** * A cache key for prompt caching. Allows manual control over prompt caching behavior. * Useful for improving cache hit rates and working around automatic caching issues. */ promptCacheKey: import_v43.z.string().optional(), /** * The retention policy for the prompt cache. * - 'in_memory': Default. Standard prompt caching behavior. * - '24h': Extended prompt caching that keeps cached prefixes active for up to 24 hours. * Currently only available for 5.1 series models. * * @default 'in_memory' */ promptCacheRetention: import_v43.z.enum(["in_memory", "24h"]).optional(), /** * A stable identifier used to help detect users of your application * that may be violating OpenAI's usage policies. The IDs should be a * string that uniquely identifies each user. We recommend hashing their * username or email address, in order to avoid sending us any identifying * information. */ safetyIdentifier: import_v43.z.string().optional(), /** * Override the system message mode for this model. * - 'system': Use the 'system' role for system messages (default for most models) * - 'developer': Use the 'developer' role for system messages (used by reasoning models) * - 'remove': Remove system messages entirely * * If not specified, the mode is automatically determined based on the model. */ systemMessageMode: import_v43.z.enum(["system", "developer", "remove"]).optional(), /** * Force treating this model as a reasoning model. * * This is useful for "stealth" reasoning models (e.g. via a custom baseURL) * where the model ID is not recognized by the SDK's allowlist. * * When enabled, the SDK applies reasoning-model parameter compatibility rules * and defaults `systemMessageMode` to `developer` unless overridden. */ forceReasoning: import_v43.z.boolean().optional() }) ) ); // src/chat/openai-chat-prepare-tools.ts var import_provider2 = require("@ai-sdk/provider"); function prepareChatTools({ tools, toolChoice }) { tools = (tools == null ? void 0 : tools.length) ? tools : void 0; const toolWarnings = []; if (tools == null) { return { tools: void 0, toolChoice: void 0, toolWarnings }; } const openaiTools2 = []; for (const tool of tools) { switch (tool.type) { case "function": openaiTools2.push({ type: "function", function: { name: tool.name, description: tool.description, parameters: tool.inputSchema, ...tool.strict != null ? { strict: tool.strict } : {} } }); break; default: toolWarnings.push({ type: "unsupported", feature: `tool type: ${tool.type}` }); break; } } if (toolChoice == null) { return { tools: openaiTools2, toolChoice: void 0, toolWarnings }; } const type = toolChoice.type; switch (type) { case "auto": case "none": case "required": return { tools: openaiTools2, toolChoice: type, toolWarnings }; case "tool": return { tools: openaiTools2, toolChoice: { type: "function", function: { name: toolChoice.toolName } }, toolWarnings }; default: { const _exhaustiveCheck = type; throw new import_provider2.UnsupportedFunctionalityError({ functionality: `tool choice type: ${_exhaustiveCheck}` }); } } } // src/chat/openai-chat-language-model.ts var OpenAIChatLanguageModel = class { constructor(modelId, config) { this.specificationVersion = "v3"; this.supportedUrls = { "image/*": [/^https?:\/\/.*$/] }; this.modelId = modelId; this.config = config; } get provider() { return this.config.provider; } async getArgs({ prompt, maxOutputTokens, temperature, topP, topK, frequencyPenalty, presencePenalty, stopSequences, responseFormat, seed, tools, toolChoice, providerOptions }) { var _a, _b, _c, _d, _e; const warnings = []; const openaiOptions = (_a = await (0, import_provider_utils5.parseProviderOptions)({ provider: "openai", providerOptions, schema: openaiChatLanguageModelOptions })) != null ? _a : {}; const modelCapabilities = getOpenAILanguageModelCapabilities(this.modelId); const isReasoningModel = (_b = openaiOptions.forceReasoning) != null ? _b : modelCapabilities.isReasoningModel; if (topK != null) { warnings.push({ type: "unsupported", feature: "topK" }); } const { messages, warnings: messageWarnings } = convertToOpenAIChatMessages( { prompt, systemMessageMode: (_c = openaiOptions.systemMessageMode) != null ? _c : isReasoningModel ? "developer" : modelCapabilities.systemMessageMode } ); warnings.push(...messageWarnings); const strictJsonSchema = (_d = openaiOptions.strictJsonSchema) != null ? _d : true; const baseArgs = { // model id: model: this.modelId, // model specific settings: logit_bias: openaiOptions.logitBias, logprobs: openaiOptions.logprobs === true || typeof openaiOptions.logprobs === "number" ? true : void 0, top_logprobs: typeof openaiOptions.logprobs === "number" ? openaiOptions.logprobs : typeof openaiOptions.logprobs === "boolean" ? openaiOptions.logprobs ? 0 : void 0 : void 0, user: openaiOptions.user, parallel_tool_calls: openaiOptions.parallelToolCalls, // standardized settings: max_tokens: maxOutputTokens, temperature, top_p: topP, frequency_penalty: frequencyPenalty, presence_penalty: presencePenalty, response_format: (responseFormat == null ? void 0 : responseFormat.type) === "json" ? responseFormat.schema != null ? { type: "json_schema", json_schema: { schema: responseFormat.schema, strict: strictJsonSchema, name: (_e = responseFormat.name) != null ? _e : "response", description: responseFormat.description } } : { type: "json_object" } : void 0, stop: stopSequences, seed, verbosity: openaiOptions.textVerbosity, // openai specific settings: // TODO AI SDK 6: remove, we auto-map maxOutputTokens now max_completion_tokens: openaiOptions.maxCompletionTokens, store: openaiOptions.store, metadata: openaiOptions.metadata, prediction: openaiOptions.prediction, reasoning_effort: openaiOptions.reasoningEffort, service_tier: openaiOptions.serviceTier, prompt_cache_key: openaiOptions.promptCacheKey, prompt_cache_retention: openaiOptions.promptCacheRetention, safety_identifier: openaiOptions.safetyIdentifier, // messages: messages }; if (isReasoningModel) { if (openaiOptions.reasoningEffort !== "none" || !modelCapabilities.supportsNonReasoningParameters) { if (baseArgs.temperature != null) { baseArgs.temperature = void 0; warnings.push({ type: "unsupported", feature: "temperature", details: "temperature is not supported for reasoning models" }); } if (baseArgs.top_p != null) { baseArgs.top_p = void 0; warnings.push({ type: "unsupported", feature: "topP", details: "topP is not supported for reasoning models" }); } if (baseArgs.logprobs != null) { baseArgs.logprobs = void 0; warnings.push({ type: "other", message: "logprobs is not supported for reasoning models" }); } } if (baseArgs.frequency_penalty != null) { baseArgs.frequency_penalty = void 0; warnings.push({ type: "unsupported", feature: "frequencyPenalty", details: "frequencyPenalty is not supported for reasoning models" }); } if (baseArgs.presence_penalty != null) { baseArgs.presence_penalty = void 0; warnings.push({ type: "unsupported", feature: "presencePenalty", details: "presencePenalty is not supported for reasoning models" }); } if (baseArgs.logit_bias != null) { baseArgs.logit_bias = void 0; warnings.push({ type: "other", message: "logitBias is not supported for reasoning models" }); } if (baseArgs.top_logprobs != null) { baseArgs.top_logprobs = void 0; warnings.push({ type: "other", message: "topLogprobs is not supported for reasoning models" }); } if (baseArgs.max_tokens != null) { if (baseArgs.max_completion_tokens == null) { baseArgs.max_completion_tokens = baseArgs.max_tokens; } baseArgs.max_tokens = void 0; } } else if (this.modelId.startsWith("gpt-4o-search-preview") || this.modelId.startsWith("gpt-4o-mini-search-preview")) { if (baseArgs.temperature != null) { baseArgs.temperature = void 0; warnings.push({ type: "unsupported", feature: "temperature", details: "temperature is not supported for the search preview models and has been removed." }); } } if (openaiOptions.serviceTier === "flex" && !modelCapabilities.supportsFlexProcessing) { warnings.push({ type: "unsupported", feature: "serviceTier", details: "flex processing is only available for o3, o4-mini, and gpt-5 models" }); baseArgs.service_tier = void 0; } if (openaiOptions.serviceTier === "priority" && !modelCapabilities.supportsPriorityProcessing) { warnings.push({ type: "unsupported", feature: "serviceTier", details: "priority processing is only available for supported models (gpt-4, gpt-5, gpt-5-mini, o3, o4-mini) and requires Enterprise access. gpt-5-nano is not supported" }); baseArgs.service_tier = void 0; } const { tools: openaiTools2, toolChoice: openaiToolChoice, toolWarnings } = prepareChatTools({ tools, toolChoice }); return { args: { ...baseArgs, tools: openaiTools2, tool_choice: openaiToolChoice }, warnings: [...warnings, ...toolWarnings] }; } async doGenerate(options) { var _a, _b, _c, _d, _e, _f, _g; const { args: body, warnings } = await this.getArgs(options); const { responseHeaders, value: response, rawValue: rawResponse } = await (0, import_provider_utils5.postJsonToApi)({ url: this.config.url({ path: "/chat/completions", modelId: this.modelId }), headers: (0, import_provider_utils5.combineHeaders)(this.config.headers(), options.headers), body, failedResponseHandler: openaiFailedResponseHandler, successfulResponseHandler: (0, import_provider_utils5.createJsonResponseHandler)( openaiChatResponseSchema ), abortSignal: options.abortSignal, fetch: this.config.fetch }); const choice = response.choices[0]; const content = []; const text = choice.message.content; if (text != null && text.length > 0) { content.push({ type: "text", text }); } for (const toolCall of (_a = choice.message.tool_calls) != null ? _a : []) { content.push({ type: "tool-call", toolCallId: (_b = toolCall.id) != null ? _b : (0, import_provider_utils5.generateId)(), toolName: toolCall.function.name, input: toolCall.function.arguments }); } for (const annotation of (_c = choice.message.annotations) != null ? _c : []) { content.push({ type: "source", sourceType: "url", id: (0, import_provider_utils5.generateId)(), url: annotation.url_citation.url, title: annotation.url_citation.title }); } const completionTokenDetails = (_d = response.usage) == null ? void 0 : _d.completion_tokens_details; const promptTokenDetails = (_e = response.usage) == null ? void 0 : _e.prompt_tokens_details; const providerMetadata = { openai: {} }; if ((completionTokenDetails == null ? void 0 : completionTokenDetails.accepted_prediction_tokens) != null) { providerMetadata.openai.acceptedPredictionTokens = completionTokenDetails == null ? void 0 : completionTokenDetails.accepted_prediction_tokens; } if ((completionTokenDetails == null ? void 0 : completionTokenDetails.rejected_prediction_tokens) != null) { providerMetadata.openai.rejectedPredictionTokens = completionTokenDetails == null ? void 0 : completionTokenDetails.rejected_prediction_tokens; } if (((_f = choice.logprobs) == null ? void 0 : _f.content) != null) { providerMetadata.openai.logprobs = choice.logprobs.content; } return { content, finishReason: { unified: mapOpenAIFinishReason(choice.finish_reason), raw: (_g = choice.finish_reason) != null ? _g : void 0 }, usage: convertOpenAIChatUsage(response.usage), request: { body }, response: { ...getResponseMetadata(response), headers: responseHeaders, body: rawResponse }, warnings, providerMetadata }; } async doStream(options) { const { args, warnings } = await this.getArgs(options); const body = { ...args, stream: true, stream_options: { include_usage: true } }; const { responseHeaders, value: response } = await (0, import_provider_utils5.postJsonToApi)({ url: this.config.url({ path: "/chat/completions", modelId: this.modelId }), headers: (0, import_provider_utils5.combineHeaders)(this.config.headers(), options.headers), body, failedResponseHandler: openaiFailedResponseHandler, successfulResponseHandler: (0, import_provider_utils5.createEventSourceResponseHandler)( openaiChatChunkSchema ), abortSignal: options.abortSignal, fetch: this.config.fetch }); const toolCalls = []; let finishReason = { unified: "other", raw: void 0 }; let usage = void 0; let metadataExtracted = false; let isActiveText = false; const providerMetadata = { openai: {} }; return { stream: response.pipeThrough( new TransformStream({ start(controller) { controller.enqueue({ type: "stream-start", warnings }); }, transform(chunk, controller) { var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, _l, _m, _n, _o, _p, _q; if (options.includeRawChunks) { controller.enqueue({ type: "raw", rawValue: chunk.rawValue }); } if (!chunk.success) { finishReason = { unified: "error", raw: void 0 }; controller.enqueue({ type: "error", error: chunk.error }); return; } const value = chunk.value; if ("error" in value) { finishReason = { unified: "error", raw: void 0 }; controller.enqueue({ type: "error", error: value.error }); return; } if (!metadataExtracted) { const metadata = getResponseMetadata(value); if (Object.values(metadata).some(Boolean)) { metadataExtracted = true; controller.enqueue({ type: "response-metadata", ...getResponseMetadata(value) }); } } if (value.usage != null) { usage = value.usage; if (((_a = value.usage.completion_tokens_details) == null ? void 0 : _a.accepted_prediction_tokens) != null) { providerMetadata.openai.acceptedPredictionTokens = (_b = value.usage.completion_tokens_details) == null ? void 0 : _b.accepted_prediction_tokens; } if (((_c = value.usage.completion_tokens_details) == null ? void 0 : _c.rejected_prediction_tokens) != null) { providerMetadata.openai.rejectedPredictionTokens = (_d = value.usage.completion_tokens_details) == null ? void 0 : _d.rejected_prediction_tokens; } } const choice = value.choices[0]; if ((choice == null ? void 0 : choice.finish_reason) != null) { finishReason = { unified: mapOpenAIFinishReason(choice.finish_reason), raw: choice.finish_reason }; } if (((_e = choice == null ? void 0 : choice.logprobs) == null ? void 0 : _e.content) != null) { providerMetadata.openai.logprobs = choice.logprobs.content; } if ((choice == null ? void 0 : choice.delta) == null) { return; } const delta = choice.delta; if (delta.content != null) { if (!isActiveText) { controller.enqueue({ type: "text-start", id: "0" }); isActiveText = true; } controller.enqueue({ type: "text-delta", id: "0", delta: delta.content }); } if (delta.tool_calls != null) { for (const toolCallDelta of delta.tool_calls) { const index = toolCallDelta.index; if (toolCalls[index] == null) { if (toolCallDelta.type !== "function") { throw new import_provider3.InvalidResponseDataError({ data: toolCallDelta, message: `Expected 'function' type.` }); } if (toolCallDelta.id == null) { throw new import_provider3.InvalidResponseDataError({ data: toolCallDelta, message: `Expected 'id' to be a string.` }); } if (((_f = toolCallDelta.function) == null ? void 0 : _f.name) == null) { throw new import_provider3.InvalidResponseDataError({ data: toolCallDelta, message: `Expected 'function.name' to be a string.` }); } controller.enqueue({ type: "tool-input-start", id: toolCallDelta.id, toolName: toolCallDelta.function.name }); toolCalls[index] = { id: toolCallDelta.id, type: "function", function: { name: toolCallDelta.function.name, arguments: (_g = toolCallDelta.function.arguments) != null ? _g : "" }, hasFinished: false }; const toolCall2 = toolCalls[index]; if (((_h = toolCall2.function) == null ? void 0 : _h.name) != null && ((_i = toolCall2.function) == null ? void 0 : _i.arguments) != null) { if (toolCall2.function.arguments.length > 0) { controller.enqueue({ type: "tool-input-delta", id: toolCall2.id, delta: toolCall2.function.arguments }); } if ((0, import_provider_utils5.isParsableJson)(toolCall2.function.arguments)) { controller.enqueue({ type: "tool-input-end", id: toolCall2.id }); controller.enqueue({ type: "tool-call", toolCallId: (_j = toolCall2.id) != null ? _j : (0, import_provider_utils5.generateId)(), toolName: toolCall2.function.name, input: toolCall2.function.arguments }); toolCall2.hasFinished = true; } } continue; } const toolCall = toolCalls[index]; if (toolCall.hasFinished) { continue; } if (((_k = toolCallDelta.function) == null ? void 0 : _k.arguments) != null) { toolCall.function.arguments += (_m = (_l = toolCallDelta.function) == null ? void 0 : _l.arguments) != null ? _m : ""; } controller.enqueue({ type: "tool-input-delta", id: toolCall.id, delta: (_n = toolCallDelta.function.arguments) != null ? _n : "" }); if (((_o = toolCall.function) == null ? void 0 : _o.name) != null && ((_p = toolCall.function) == null ? void 0 : _p.arguments) != null && (0, import_provider_utils5.isParsableJson)(toolCall.function.arguments)) { controller.enqueue({ type: "tool-input-end", id: toolCall.id }); controller.enqueue({ type: "tool-call", toolCallId: (_q = toolCall.id) != null ? _q : (0, import_provider_utils5.generateId)(), toolName: toolCall.function.name, input: toolCall.function.arguments }); toolCall.hasFinished = true; } } } if (delta.annotations != null) { for (const annotation of delta.annotations) { controller.enqueue({ type: "source", sourceType: "url", id: (0, import_provider_utils5.generateId)(), url: annotation.url_citation.url, title: annotation.url_citation.title }); } } }, flush(controller) { if (isActiveText) { controller.enqueue({ type: "text-end", id: "0" }); } controller.enqueue({ type: "finish", finishReason, usage: convertOpenAIChatUsage(usage), ...providerMetadata != null ? { providerMetadata } : {} }); } }) ), request: { body }, response: { headers: responseHeaders } }; } }; // src/completion/openai-completion-language-model.ts var import_provider_utils8 = require("@ai-sdk/provider-utils"); // src/completion/convert-openai-completion-usage.ts function convertOpenAICompletionUsage(usage) { var _a, _b, _c, _d; if (usage == null) { return { inputTokens: { total: void 0, noCache: void 0, cacheRead: void 0, cacheWrite: void 0 }, outputTokens: { total: void 0, text: void 0, reasoning: void 0 }, raw: void 0 }; } const promptTokens = (_a = usage.prompt_tokens) != null ? _a : 0; const completionTokens = (_b = usage.completion_tokens) != null ? _b : 0; return { inputTokens: { total: (_c = usage.prompt_tokens) != null ? _c : void 0, noCache: promptTokens, cacheRead: void 0, cacheWrite: void 0 }, outputTokens: { total: (_d = usage.completion_tokens) != null ? _d : void 0, text: completionTokens, reasoning: void 0 }, raw: usage }; } // src/completion/convert-to-openai-completion-prompt.ts var import_provider4 = require("@ai-sdk/provider"); function convertToOpenAICompletionPrompt({ prompt, user = "user", assistant = "assistant" }) { let text = ""; if (prompt[0].role === "system") { text += `${prompt[0].content} `; prompt = prompt.slice(1); } for (const { role, content } of prompt) { switch (role) { case "system": { throw new import_provider4.InvalidPromptError({ message: "Unexpected system message in prompt: ${content}", prompt }); } case "user": { const userMessage = content.map((part) => { switch (part.type) { case "text": { return part.text; } } }).filter(Boolean).join(""); text += `${user}: ${userMessage} `; break; } case "assistant": { const assistantMessage = content.map((part) => { switch (part.type) { case "text": { return part.text; } case "tool-call": { throw new import_provider4.UnsupportedFunctionalityError({ functionality: "tool-call messages" }); } } }).join(""); text += `${assistant}: ${assistantMessage} `; break; } case "tool": { throw new import_provider4.UnsupportedFunctionalityError({ functionality: "tool messages" }); } default: { const _exhaustiveCheck = role; throw new Error(`Unsupported role: ${_exhaustiveCheck}`); } } } text += `${assistant}: `; return { prompt: text, stopSequences: [` ${user}:`] }; } // src/completion/get-response-metadata.ts function getResponseMetadata2({ id, model, created }) { return { id: id != null ? id : void 0, modelId: model != null ? model : void 0, timestamp: created != null ? new Date(created * 1e3) : void 0 }; } // src/completion/map-openai-finish-reason.ts function mapOpenAIFinishReason2(finishReason) { switch (finishReason) { case "stop": return "stop"; case "length": return "length"; case "content_filter": return "content-filter"; case "function_call": case "tool_calls": return "tool-calls"; default: return "other"; } } // src/completion/openai-completion-api.ts var import_v44 = require("zod/v4"); var import_provider_utils6 = require("@ai-sdk/provider-utils"); var openaiCompletionResponseSchema = (0, import_provider_utils6.lazySchema)( () => (0, import_provider_utils6.zodSchema)( import_v44.z.object({ id: import_v44.z.string().nullish(), created: import_v44.z.number().nullish(), model: import_v44.z.string().nullish(), choices: import_v44.z.array( import_v44.z.object({ text: import_v44.z.string(), finish_reason: import_v44.z.string(), logprobs: import_v44.z.object({ tokens: import_v44.z.array(import_v44.z.string()), token_logprobs: import_v44.z.array(import_v44.z.number()), top_logprobs: import_v44.z.array(import_v44.z.record(import_v44.z.string(), import_v44.z.number())).nullish() }).nullish() }) ), usage: import_v44.z.object({ prompt_tokens: import_v44.z.number(), completion_tokens: import_v44.z.number(), total_tokens: import_v44.z.number() }).nullish() }) ) ); var openaiCompletionChunkSchema = (0, import_provider_utils6.lazySchema)( () => (0, import_provider_utils6.zodSchema)( import_v44.z.union([ import_v44.z.object({ id: import_v44.z.string().nullish(), created: import_v44.z.number().nullish(), model: import_v44.z.string().nullish(), choices: import_v44.z.array( import_v44.z.object({ text: import_v44.z.string(), finish_reason: import_v44.z.string().nullish(), index: import_v44.z.number(), logprobs: import_v44.z.object({ tokens: import_v44.z.array(import_v44.z.string()), token_logprobs: import_v44.z.array(import_v44.z.number()), top_logprobs: import_v44.z.array(import_v44.z.record(import_v44.z.string(), import_v44.z.number())).nullish() }).nullish() }) ), usage: import_v44.z.object({ prompt_tokens: import_v44.z.number(), completion_tokens: import_v44.z.number(), total_tokens: import_v44.z.number() }).nullish() }), openaiErrorDataSchema ]) ) ); // src/completion/openai-completion-options.ts var import_provider_utils7 = require("@ai-sdk/provider-utils"); var import_v45 = require("zod/v4"); var openaiCompletionProviderOptions = (0, import_provider_utils7.lazySchema)( () => (0, import_provider_utils7.zodSchema)( import_v45.z.object({ /** Echo back the prompt in addition to the completion. */ echo: import_v45.z.boolean().optional(), /** Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this tokenizer tool to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection