@ai-sdk/openai-compatible
Version:
This package provides a foundation for implementing providers that expose an OpenAI-compatible API.
1 lines • 98.1 kB
Source Map (JSON)
{"version":3,"sources":["../src/chat/openai-compatible-chat-language-model.ts","../src/openai-compatible-error.ts","../src/chat/convert-openai-compatible-chat-usage.ts","../src/chat/convert-to-openai-compatible-chat-messages.ts","../src/chat/get-response-metadata.ts","../src/chat/map-openai-compatible-finish-reason.ts","../src/chat/openai-compatible-chat-options.ts","../src/chat/openai-compatible-prepare-tools.ts","../src/completion/openai-compatible-completion-language-model.ts","../src/completion/convert-openai-compatible-completion-usage.ts","../src/completion/convert-to-openai-compatible-completion-prompt.ts","../src/completion/get-response-metadata.ts","../src/completion/map-openai-compatible-finish-reason.ts","../src/completion/openai-compatible-completion-options.ts","../src/embedding/openai-compatible-embedding-model.ts","../src/embedding/openai-compatible-embedding-options.ts","../src/image/openai-compatible-image-model.ts","../src/openai-compatible-provider.ts","../src/version.ts"],"sourcesContent":["import {\n APICallError,\n InvalidResponseDataError,\n LanguageModelV3,\n LanguageModelV3CallOptions,\n LanguageModelV3Content,\n LanguageModelV3FinishReason,\n LanguageModelV3GenerateResult,\n LanguageModelV3StreamPart,\n LanguageModelV3StreamResult,\n SharedV3ProviderMetadata,\n SharedV3Warning,\n} from '@ai-sdk/provider';\nimport {\n combineHeaders,\n createEventSourceResponseHandler,\n createJsonErrorResponseHandler,\n createJsonResponseHandler,\n FetchFunction,\n generateId,\n isParsableJson,\n parseProviderOptions,\n ParseResult,\n postJsonToApi,\n ResponseHandler,\n} from '@ai-sdk/provider-utils';\nimport { z } from 'zod/v4';\nimport {\n defaultOpenAICompatibleErrorStructure,\n ProviderErrorStructure,\n} from '../openai-compatible-error';\nimport { convertOpenAICompatibleChatUsage } from './convert-openai-compatible-chat-usage';\nimport { convertToOpenAICompatibleChatMessages } from './convert-to-openai-compatible-chat-messages';\nimport { getResponseMetadata } from './get-response-metadata';\nimport { mapOpenAICompatibleFinishReason } from './map-openai-compatible-finish-reason';\nimport {\n OpenAICompatibleChatModelId,\n openaiCompatibleProviderOptions,\n} from './openai-compatible-chat-options';\nimport { MetadataExtractor } from './openai-compatible-metadata-extractor';\nimport { prepareTools } from './openai-compatible-prepare-tools';\n\nexport type OpenAICompatibleChatConfig = {\n provider: string;\n headers: () => Record<string, string | undefined>;\n url: (options: { modelId: string; path: string }) => string;\n fetch?: FetchFunction;\n includeUsage?: boolean;\n errorStructure?: ProviderErrorStructure<any>;\n metadataExtractor?: MetadataExtractor;\n\n /**\n * Whether the model supports structured outputs.\n */\n supportsStructuredOutputs?: boolean;\n\n /**\n * The supported URLs for the model.\n */\n supportedUrls?: () => LanguageModelV3['supportedUrls'];\n};\n\nexport class OpenAICompatibleChatLanguageModel implements LanguageModelV3 {\n readonly specificationVersion = 'v3';\n\n readonly supportsStructuredOutputs: boolean;\n\n readonly modelId: OpenAICompatibleChatModelId;\n private readonly config: OpenAICompatibleChatConfig;\n private readonly failedResponseHandler: ResponseHandler<APICallError>;\n private readonly chunkSchema; // type inferred via constructor\n\n constructor(\n modelId: OpenAICompatibleChatModelId,\n config: OpenAICompatibleChatConfig,\n ) {\n this.modelId = modelId;\n this.config = config;\n\n // initialize error handling:\n const errorStructure =\n config.errorStructure ?? defaultOpenAICompatibleErrorStructure;\n this.chunkSchema = createOpenAICompatibleChatChunkSchema(\n errorStructure.errorSchema,\n );\n this.failedResponseHandler = createJsonErrorResponseHandler(errorStructure);\n\n this.supportsStructuredOutputs = config.supportsStructuredOutputs ?? false;\n }\n\n get provider(): string {\n return this.config.provider;\n }\n\n private get providerOptionsName(): string {\n return this.config.provider.split('.')[0].trim();\n }\n\n get supportedUrls() {\n return this.config.supportedUrls?.() ?? {};\n }\n\n private async getArgs({\n prompt,\n maxOutputTokens,\n temperature,\n topP,\n topK,\n frequencyPenalty,\n presencePenalty,\n providerOptions,\n stopSequences,\n responseFormat,\n seed,\n toolChoice,\n tools,\n }: LanguageModelV3CallOptions) {\n const warnings: SharedV3Warning[] = [];\n\n // Parse provider options\n const compatibleOptions = Object.assign(\n (await parseProviderOptions({\n provider: 'openai-compatible',\n providerOptions,\n schema: openaiCompatibleProviderOptions,\n })) ?? {},\n (await parseProviderOptions({\n provider: this.providerOptionsName,\n providerOptions,\n schema: openaiCompatibleProviderOptions,\n })) ?? {},\n );\n\n if (topK != null) {\n warnings.push({ type: 'unsupported', feature: 'topK' });\n }\n\n if (\n responseFormat?.type === 'json' &&\n responseFormat.schema != null &&\n !this.supportsStructuredOutputs\n ) {\n warnings.push({\n type: 'unsupported',\n feature: 'responseFormat',\n details:\n 'JSON response format schema is only supported with structuredOutputs',\n });\n }\n\n const {\n tools: openaiTools,\n toolChoice: openaiToolChoice,\n toolWarnings,\n } = prepareTools({\n tools,\n toolChoice,\n });\n\n return {\n args: {\n // model id:\n model: this.modelId,\n\n // model specific settings:\n user: compatibleOptions.user,\n\n // standardized settings:\n max_tokens: maxOutputTokens,\n temperature,\n top_p: topP,\n frequency_penalty: frequencyPenalty,\n presence_penalty: presencePenalty,\n response_format:\n responseFormat?.type === 'json'\n ? this.supportsStructuredOutputs === true &&\n responseFormat.schema != null\n ? {\n type: 'json_schema',\n json_schema: {\n schema: responseFormat.schema,\n name: responseFormat.name ?? 'response',\n description: responseFormat.description,\n },\n }\n : { type: 'json_object' }\n : undefined,\n\n stop: stopSequences,\n seed,\n ...Object.fromEntries(\n Object.entries(\n providerOptions?.[this.providerOptionsName] ?? {},\n ).filter(\n ([key]) =>\n !Object.keys(openaiCompatibleProviderOptions.shape).includes(key),\n ),\n ),\n\n reasoning_effort: compatibleOptions.reasoningEffort,\n verbosity: compatibleOptions.textVerbosity,\n\n // messages:\n messages: convertToOpenAICompatibleChatMessages(prompt),\n\n // tools:\n tools: openaiTools,\n tool_choice: openaiToolChoice,\n },\n warnings: [...warnings, ...toolWarnings],\n };\n }\n\n async doGenerate(\n options: LanguageModelV3CallOptions,\n ): Promise<LanguageModelV3GenerateResult> {\n const { args, warnings } = await this.getArgs({ ...options });\n\n const body = JSON.stringify(args);\n\n const {\n responseHeaders,\n value: responseBody,\n rawValue: rawResponse,\n } = await postJsonToApi({\n url: this.config.url({\n path: '/chat/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body: args,\n failedResponseHandler: this.failedResponseHandler,\n successfulResponseHandler: createJsonResponseHandler(\n OpenAICompatibleChatResponseSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n const choice = responseBody.choices[0];\n const content: Array<LanguageModelV3Content> = [];\n\n // text content:\n const text = choice.message.content;\n if (text != null && text.length > 0) {\n content.push({ type: 'text', text });\n }\n\n // reasoning content:\n const reasoning =\n choice.message.reasoning_content ?? choice.message.reasoning;\n if (reasoning != null && reasoning.length > 0) {\n content.push({\n type: 'reasoning',\n text: reasoning,\n });\n }\n\n // tool calls:\n if (choice.message.tool_calls != null) {\n for (const toolCall of choice.message.tool_calls) {\n content.push({\n type: 'tool-call',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n input: toolCall.function.arguments!,\n });\n }\n }\n\n // provider metadata:\n const providerMetadata: SharedV3ProviderMetadata = {\n [this.providerOptionsName]: {},\n ...(await this.config.metadataExtractor?.extractMetadata?.({\n parsedBody: rawResponse,\n })),\n };\n const completionTokenDetails =\n responseBody.usage?.completion_tokens_details;\n if (completionTokenDetails?.accepted_prediction_tokens != null) {\n providerMetadata[this.providerOptionsName].acceptedPredictionTokens =\n completionTokenDetails?.accepted_prediction_tokens;\n }\n if (completionTokenDetails?.rejected_prediction_tokens != null) {\n providerMetadata[this.providerOptionsName].rejectedPredictionTokens =\n completionTokenDetails?.rejected_prediction_tokens;\n }\n\n return {\n content,\n finishReason: {\n unified: mapOpenAICompatibleFinishReason(choice.finish_reason),\n raw: choice.finish_reason ?? undefined,\n },\n usage: convertOpenAICompatibleChatUsage(responseBody.usage),\n providerMetadata,\n request: { body },\n response: {\n ...getResponseMetadata(responseBody),\n headers: responseHeaders,\n body: rawResponse,\n },\n warnings,\n };\n }\n\n async doStream(\n options: LanguageModelV3CallOptions,\n ): Promise<LanguageModelV3StreamResult> {\n const { args, warnings } = await this.getArgs({ ...options });\n\n const body = {\n ...args,\n stream: true,\n\n // only include stream_options when in strict compatibility mode:\n stream_options: this.config.includeUsage\n ? { include_usage: true }\n : undefined,\n };\n\n const metadataExtractor =\n this.config.metadataExtractor?.createStreamExtractor();\n\n const { responseHeaders, value: response } = await postJsonToApi({\n url: this.config.url({\n path: '/chat/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body,\n failedResponseHandler: this.failedResponseHandler,\n successfulResponseHandler: createEventSourceResponseHandler(\n this.chunkSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n const toolCalls: Array<{\n id: string;\n type: 'function';\n function: {\n name: string;\n arguments: string;\n };\n hasFinished: boolean;\n }> = [];\n\n let finishReason: LanguageModelV3FinishReason = {\n unified: 'other',\n raw: undefined,\n };\n let usage: z.infer<typeof openaiCompatibleTokenUsageSchema> | undefined =\n undefined;\n let isFirstChunk = true;\n const providerOptionsName = this.providerOptionsName;\n let isActiveReasoning = false;\n let isActiveText = false;\n\n return {\n stream: response.pipeThrough(\n new TransformStream<\n ParseResult<z.infer<typeof this.chunkSchema>>,\n LanguageModelV3StreamPart\n >({\n start(controller) {\n controller.enqueue({ type: 'stream-start', warnings });\n },\n\n transform(chunk, controller) {\n // Emit raw chunk if requested (before anything else)\n if (options.includeRawChunks) {\n controller.enqueue({ type: 'raw', rawValue: chunk.rawValue });\n }\n\n // handle failed chunk parsing / validation:\n if (!chunk.success) {\n finishReason = { unified: 'error', raw: undefined };\n controller.enqueue({ type: 'error', error: chunk.error });\n return;\n }\n\n metadataExtractor?.processChunk(chunk.rawValue);\n\n // handle error chunks:\n if ('error' in chunk.value) {\n finishReason = { unified: 'error', raw: undefined };\n controller.enqueue({\n type: 'error',\n error: chunk.value.error.message,\n });\n return;\n }\n\n // TODO we lost type safety on Chunk, most likely due to the error schema. MUST FIX\n // remove this workaround when the issue is fixed\n const value = chunk.value as z.infer<typeof chunkBaseSchema>;\n\n if (isFirstChunk) {\n isFirstChunk = false;\n\n controller.enqueue({\n type: 'response-metadata',\n ...getResponseMetadata(value),\n });\n }\n\n if (value.usage != null) {\n usage = value.usage;\n }\n\n const choice = value.choices[0];\n\n if (choice?.finish_reason != null) {\n finishReason = {\n unified: mapOpenAICompatibleFinishReason(choice.finish_reason),\n raw: choice.finish_reason ?? undefined,\n };\n }\n\n if (choice?.delta == null) {\n return;\n }\n\n const delta = choice.delta;\n\n // enqueue reasoning before text deltas:\n const reasoningContent = delta.reasoning_content ?? delta.reasoning;\n if (reasoningContent) {\n if (!isActiveReasoning) {\n controller.enqueue({\n type: 'reasoning-start',\n id: 'reasoning-0',\n });\n isActiveReasoning = true;\n }\n\n controller.enqueue({\n type: 'reasoning-delta',\n id: 'reasoning-0',\n delta: reasoningContent,\n });\n }\n\n if (delta.content) {\n if (!isActiveText) {\n controller.enqueue({ type: 'text-start', id: 'txt-0' });\n isActiveText = true;\n }\n\n controller.enqueue({\n type: 'text-delta',\n id: 'txt-0',\n delta: delta.content,\n });\n }\n\n if (delta.tool_calls != null) {\n for (const toolCallDelta of delta.tool_calls) {\n const index = toolCallDelta.index;\n\n if (toolCalls[index] == null) {\n if (toolCallDelta.id == null) {\n throw new InvalidResponseDataError({\n data: toolCallDelta,\n message: `Expected 'id' to be a string.`,\n });\n }\n\n if (toolCallDelta.function?.name == null) {\n throw new InvalidResponseDataError({\n data: toolCallDelta,\n message: `Expected 'function.name' to be a string.`,\n });\n }\n\n controller.enqueue({\n type: 'tool-input-start',\n id: toolCallDelta.id,\n toolName: toolCallDelta.function.name,\n });\n\n toolCalls[index] = {\n id: toolCallDelta.id,\n type: 'function',\n function: {\n name: toolCallDelta.function.name,\n arguments: toolCallDelta.function.arguments ?? '',\n },\n hasFinished: false,\n };\n\n const toolCall = toolCalls[index];\n\n if (\n toolCall.function?.name != null &&\n toolCall.function?.arguments != null\n ) {\n // send delta if the argument text has already started:\n if (toolCall.function.arguments.length > 0) {\n controller.enqueue({\n type: 'tool-input-delta',\n id: toolCall.id,\n delta: toolCall.function.arguments,\n });\n }\n\n // check if tool call is complete\n // (some providers send the full tool call in one chunk):\n if (isParsableJson(toolCall.function.arguments)) {\n controller.enqueue({\n type: 'tool-input-end',\n id: toolCall.id,\n });\n\n controller.enqueue({\n type: 'tool-call',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n input: toolCall.function.arguments,\n });\n toolCall.hasFinished = true;\n }\n }\n\n continue;\n }\n\n // existing tool call, merge if not finished\n const toolCall = toolCalls[index];\n\n if (toolCall.hasFinished) {\n continue;\n }\n\n if (toolCallDelta.function?.arguments != null) {\n toolCall.function!.arguments +=\n toolCallDelta.function?.arguments ?? '';\n }\n\n // send delta\n controller.enqueue({\n type: 'tool-input-delta',\n id: toolCall.id,\n delta: toolCallDelta.function.arguments ?? '',\n });\n\n // check if tool call is complete\n if (\n toolCall.function?.name != null &&\n toolCall.function?.arguments != null &&\n isParsableJson(toolCall.function.arguments)\n ) {\n controller.enqueue({\n type: 'tool-input-end',\n id: toolCall.id,\n });\n\n controller.enqueue({\n type: 'tool-call',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n input: toolCall.function.arguments,\n });\n toolCall.hasFinished = true;\n }\n }\n }\n },\n\n flush(controller) {\n if (isActiveReasoning) {\n controller.enqueue({ type: 'reasoning-end', id: 'reasoning-0' });\n }\n\n if (isActiveText) {\n controller.enqueue({ type: 'text-end', id: 'txt-0' });\n }\n\n // go through all tool calls and send the ones that are not finished\n for (const toolCall of toolCalls.filter(\n toolCall => !toolCall.hasFinished,\n )) {\n controller.enqueue({\n type: 'tool-input-end',\n id: toolCall.id,\n });\n\n controller.enqueue({\n type: 'tool-call',\n toolCallId: toolCall.id ?? generateId(),\n toolName: toolCall.function.name,\n input: toolCall.function.arguments,\n });\n }\n\n const providerMetadata: SharedV3ProviderMetadata = {\n [providerOptionsName]: {},\n ...metadataExtractor?.buildMetadata(),\n };\n if (\n usage?.completion_tokens_details?.accepted_prediction_tokens !=\n null\n ) {\n providerMetadata[providerOptionsName].acceptedPredictionTokens =\n usage?.completion_tokens_details?.accepted_prediction_tokens;\n }\n if (\n usage?.completion_tokens_details?.rejected_prediction_tokens !=\n null\n ) {\n providerMetadata[providerOptionsName].rejectedPredictionTokens =\n usage?.completion_tokens_details?.rejected_prediction_tokens;\n }\n\n controller.enqueue({\n type: 'finish',\n finishReason,\n usage: convertOpenAICompatibleChatUsage(usage),\n providerMetadata,\n });\n },\n }),\n ),\n request: { body },\n response: { headers: responseHeaders },\n };\n }\n}\n\nconst openaiCompatibleTokenUsageSchema = z\n .object({\n prompt_tokens: z.number().nullish(),\n completion_tokens: z.number().nullish(),\n total_tokens: z.number().nullish(),\n prompt_tokens_details: z\n .object({\n cached_tokens: z.number().nullish(),\n })\n .nullish(),\n completion_tokens_details: z\n .object({\n reasoning_tokens: z.number().nullish(),\n accepted_prediction_tokens: z.number().nullish(),\n rejected_prediction_tokens: z.number().nullish(),\n })\n .nullish(),\n })\n .nullish();\n\n// limited version of the schema, focussed on what is needed for the implementation\n// this approach limits breakages when the API changes and increases efficiency\nconst OpenAICompatibleChatResponseSchema = z.object({\n id: z.string().nullish(),\n created: z.number().nullish(),\n model: z.string().nullish(),\n choices: z.array(\n z.object({\n message: z.object({\n role: z.literal('assistant').nullish(),\n content: z.string().nullish(),\n reasoning_content: z.string().nullish(),\n reasoning: z.string().nullish(),\n tool_calls: z\n .array(\n z.object({\n id: z.string().nullish(),\n function: z.object({\n name: z.string(),\n arguments: z.string(),\n }),\n }),\n )\n .nullish(),\n }),\n finish_reason: z.string().nullish(),\n }),\n ),\n usage: openaiCompatibleTokenUsageSchema,\n});\n\nconst chunkBaseSchema = z.object({\n id: z.string().nullish(),\n created: z.number().nullish(),\n model: z.string().nullish(),\n choices: z.array(\n z.object({\n delta: z\n .object({\n role: z.enum(['assistant']).nullish(),\n content: z.string().nullish(),\n // Most openai-compatible models set `reasoning_content`, but some\n // providers serving `gpt-oss` set `reasoning`. See #7866\n reasoning_content: z.string().nullish(),\n reasoning: z.string().nullish(),\n tool_calls: z\n .array(\n z.object({\n index: z.number(),\n id: z.string().nullish(),\n function: z.object({\n name: z.string().nullish(),\n arguments: z.string().nullish(),\n }),\n }),\n )\n .nullish(),\n })\n .nullish(),\n finish_reason: z.string().nullish(),\n }),\n ),\n usage: openaiCompatibleTokenUsageSchema,\n});\n\n// limited version of the schema, focussed on what is needed for the implementation\n// this approach limits breakages when the API changes and increases efficiency\nconst createOpenAICompatibleChatChunkSchema = <\n ERROR_SCHEMA extends z.core.$ZodType,\n>(\n errorSchema: ERROR_SCHEMA,\n) => z.union([chunkBaseSchema, errorSchema]);\n","import { z, ZodType } from 'zod/v4';\n\nexport const openaiCompatibleErrorDataSchema = z.object({\n error: z.object({\n message: z.string(),\n\n // The additional information below is handled loosely to support\n // OpenAI-compatible providers that have slightly different error\n // responses:\n type: z.string().nullish(),\n param: z.any().nullish(),\n code: z.union([z.string(), z.number()]).nullish(),\n }),\n});\n\nexport type OpenAICompatibleErrorData = z.infer<\n typeof openaiCompatibleErrorDataSchema\n>;\n\nexport type ProviderErrorStructure<T> = {\n errorSchema: ZodType<T>;\n errorToMessage: (error: T) => string;\n isRetryable?: (response: Response, error?: T) => boolean;\n};\n\nexport const defaultOpenAICompatibleErrorStructure: ProviderErrorStructure<OpenAICompatibleErrorData> =\n {\n errorSchema: openaiCompatibleErrorDataSchema,\n errorToMessage: data => data.error.message,\n };\n","import { LanguageModelV3Usage } from '@ai-sdk/provider';\n\nexport function convertOpenAICompatibleChatUsage(\n usage:\n | {\n prompt_tokens?: number | null;\n completion_tokens?: number | null;\n prompt_tokens_details?: {\n cached_tokens?: number | null;\n } | null;\n completion_tokens_details?: {\n reasoning_tokens?: number | null;\n } | null;\n }\n | undefined\n | null,\n): LanguageModelV3Usage {\n if (usage == null) {\n return {\n inputTokens: {\n total: undefined,\n noCache: undefined,\n cacheRead: undefined,\n cacheWrite: undefined,\n },\n outputTokens: {\n total: undefined,\n text: undefined,\n reasoning: undefined,\n },\n raw: undefined,\n };\n }\n\n const promptTokens = usage.prompt_tokens ?? 0;\n const completionTokens = usage.completion_tokens ?? 0;\n const cacheReadTokens = usage.prompt_tokens_details?.cached_tokens ?? 0;\n const reasoningTokens =\n usage.completion_tokens_details?.reasoning_tokens ?? 0;\n\n return {\n inputTokens: {\n total: promptTokens,\n noCache: promptTokens - cacheReadTokens,\n cacheRead: cacheReadTokens,\n cacheWrite: undefined,\n },\n outputTokens: {\n total: completionTokens,\n text: completionTokens - reasoningTokens,\n reasoning: reasoningTokens,\n },\n raw: usage,\n };\n}\n","import {\n LanguageModelV3Prompt,\n SharedV3ProviderMetadata,\n UnsupportedFunctionalityError,\n} from '@ai-sdk/provider';\nimport { OpenAICompatibleChatPrompt } from './openai-compatible-api-types';\nimport { convertToBase64 } from '@ai-sdk/provider-utils';\n\nfunction getOpenAIMetadata(message: {\n providerOptions?: SharedV3ProviderMetadata;\n}) {\n return message?.providerOptions?.openaiCompatible ?? {};\n}\n\nexport function convertToOpenAICompatibleChatMessages(\n prompt: LanguageModelV3Prompt,\n): OpenAICompatibleChatPrompt {\n const messages: OpenAICompatibleChatPrompt = [];\n for (const { role, content, ...message } of prompt) {\n const metadata = getOpenAIMetadata({ ...message });\n switch (role) {\n case 'system': {\n messages.push({ role: 'system', content, ...metadata });\n break;\n }\n\n case 'user': {\n if (content.length === 1 && content[0].type === 'text') {\n messages.push({\n role: 'user',\n content: content[0].text,\n ...getOpenAIMetadata(content[0]),\n });\n break;\n }\n\n messages.push({\n role: 'user',\n content: content.map(part => {\n const partMetadata = getOpenAIMetadata(part);\n switch (part.type) {\n case 'text': {\n return { type: 'text', text: part.text, ...partMetadata };\n }\n case 'file': {\n if (part.mediaType.startsWith('image/')) {\n const mediaType =\n part.mediaType === 'image/*'\n ? 'image/jpeg'\n : part.mediaType;\n\n return {\n type: 'image_url',\n image_url: {\n url:\n part.data instanceof URL\n ? part.data.toString()\n : `data:${mediaType};base64,${convertToBase64(part.data)}`,\n },\n ...partMetadata,\n };\n } else {\n throw new UnsupportedFunctionalityError({\n functionality: `file part media type ${part.mediaType}`,\n });\n }\n }\n }\n }),\n ...metadata,\n });\n\n break;\n }\n\n case 'assistant': {\n let text = '';\n const toolCalls: Array<{\n id: string;\n type: 'function';\n function: { name: string; arguments: string };\n }> = [];\n\n for (const part of content) {\n const partMetadata = getOpenAIMetadata(part);\n switch (part.type) {\n case 'text': {\n text += part.text;\n break;\n }\n case 'tool-call': {\n toolCalls.push({\n id: part.toolCallId,\n type: 'function',\n function: {\n name: part.toolName,\n arguments: JSON.stringify(part.input),\n },\n ...partMetadata,\n });\n break;\n }\n }\n }\n\n messages.push({\n role: 'assistant',\n content: text,\n tool_calls: toolCalls.length > 0 ? toolCalls : undefined,\n ...metadata,\n });\n\n break;\n }\n\n case 'tool': {\n for (const toolResponse of content) {\n if (toolResponse.type === 'tool-approval-response') {\n continue;\n }\n\n const output = toolResponse.output;\n\n let contentValue: string;\n switch (output.type) {\n case 'text':\n case 'error-text':\n contentValue = output.value;\n break;\n case 'execution-denied':\n contentValue = output.reason ?? 'Tool execution denied.';\n break;\n case 'content':\n case 'json':\n case 'error-json':\n contentValue = JSON.stringify(output.value);\n break;\n }\n\n const toolResponseMetadata = getOpenAIMetadata(toolResponse);\n messages.push({\n role: 'tool',\n tool_call_id: toolResponse.toolCallId,\n content: contentValue,\n ...toolResponseMetadata,\n });\n }\n break;\n }\n\n default: {\n const _exhaustiveCheck: never = role;\n throw new Error(`Unsupported role: ${_exhaustiveCheck}`);\n }\n }\n }\n\n return messages;\n}\n","export function getResponseMetadata({\n id,\n model,\n created,\n}: {\n id?: string | undefined | null;\n created?: number | undefined | null;\n model?: string | undefined | null;\n}) {\n return {\n id: id ?? undefined,\n modelId: model ?? undefined,\n timestamp: created != null ? new Date(created * 1000) : undefined,\n };\n}\n","import { LanguageModelV3FinishReason } from '@ai-sdk/provider';\n\nexport function mapOpenAICompatibleFinishReason(\n finishReason: string | null | undefined,\n): LanguageModelV3FinishReason['unified'] {\n switch (finishReason) {\n case 'stop':\n return 'stop';\n case 'length':\n return 'length';\n case 'content_filter':\n return 'content-filter';\n case 'function_call':\n case 'tool_calls':\n return 'tool-calls';\n default:\n return 'other';\n }\n}\n","import { z } from 'zod/v4';\n\nexport type OpenAICompatibleChatModelId = string;\n\nexport const openaiCompatibleProviderOptions = z.object({\n /**\n * A unique identifier representing your end-user, which can help the provider to\n * monitor and detect abuse.\n */\n user: z.string().optional(),\n\n /**\n * Reasoning effort for reasoning models. Defaults to `medium`.\n */\n reasoningEffort: z.string().optional(),\n\n /**\n * Controls the verbosity of the generated text. Defaults to `medium`.\n */\n textVerbosity: z.string().optional(),\n});\n\nexport type OpenAICompatibleProviderOptions = z.infer<\n typeof openaiCompatibleProviderOptions\n>;\n","import {\n LanguageModelV3CallOptions,\n SharedV3Warning,\n UnsupportedFunctionalityError,\n} from '@ai-sdk/provider';\n\nexport function prepareTools({\n tools,\n toolChoice,\n}: {\n tools: LanguageModelV3CallOptions['tools'];\n toolChoice?: LanguageModelV3CallOptions['toolChoice'];\n}): {\n tools:\n | undefined\n | Array<{\n type: 'function';\n function: {\n name: string;\n description: string | undefined;\n parameters: unknown;\n strict?: boolean;\n };\n }>;\n toolChoice:\n | { type: 'function'; function: { name: string } }\n | 'auto'\n | 'none'\n | 'required'\n | undefined;\n toolWarnings: SharedV3Warning[];\n} {\n // when the tools array is empty, change it to undefined to prevent errors:\n tools = tools?.length ? tools : undefined;\n\n const toolWarnings: SharedV3Warning[] = [];\n\n if (tools == null) {\n return { tools: undefined, toolChoice: undefined, toolWarnings };\n }\n\n const openaiCompatTools: Array<{\n type: 'function';\n function: {\n name: string;\n description: string | undefined;\n parameters: unknown;\n strict?: boolean;\n };\n }> = [];\n\n for (const tool of tools) {\n if (tool.type === 'provider') {\n toolWarnings.push({\n type: 'unsupported',\n feature: `provider-defined tool ${tool.id}`,\n });\n } else {\n openaiCompatTools.push({\n type: 'function',\n function: {\n name: tool.name,\n description: tool.description,\n parameters: tool.inputSchema,\n ...(tool.strict != null ? { strict: tool.strict } : {}),\n },\n });\n }\n }\n\n if (toolChoice == null) {\n return { tools: openaiCompatTools, toolChoice: undefined, toolWarnings };\n }\n\n const type = toolChoice.type;\n\n switch (type) {\n case 'auto':\n case 'none':\n case 'required':\n return { tools: openaiCompatTools, toolChoice: type, toolWarnings };\n case 'tool':\n return {\n tools: openaiCompatTools,\n toolChoice: {\n type: 'function',\n function: { name: toolChoice.toolName },\n },\n toolWarnings,\n };\n default: {\n const _exhaustiveCheck: never = type;\n throw new UnsupportedFunctionalityError({\n functionality: `tool choice type: ${_exhaustiveCheck}`,\n });\n }\n }\n}\n","import {\n APICallError,\n LanguageModelV3,\n LanguageModelV3CallOptions,\n LanguageModelV3Content,\n LanguageModelV3FinishReason,\n LanguageModelV3GenerateResult,\n LanguageModelV3StreamPart,\n LanguageModelV3StreamResult,\n SharedV3Warning,\n} from '@ai-sdk/provider';\nimport {\n combineHeaders,\n createEventSourceResponseHandler,\n createJsonErrorResponseHandler,\n createJsonResponseHandler,\n FetchFunction,\n parseProviderOptions,\n ParseResult,\n postJsonToApi,\n ResponseHandler,\n} from '@ai-sdk/provider-utils';\nimport { z } from 'zod/v4';\nimport {\n defaultOpenAICompatibleErrorStructure,\n ProviderErrorStructure,\n} from '../openai-compatible-error';\nimport { convertOpenAICompatibleCompletionUsage } from './convert-openai-compatible-completion-usage';\nimport { convertToOpenAICompatibleCompletionPrompt } from './convert-to-openai-compatible-completion-prompt';\nimport { getResponseMetadata } from './get-response-metadata';\nimport { mapOpenAICompatibleFinishReason } from './map-openai-compatible-finish-reason';\nimport {\n OpenAICompatibleCompletionModelId,\n openaiCompatibleCompletionProviderOptions,\n} from './openai-compatible-completion-options';\n\ntype OpenAICompatibleCompletionConfig = {\n provider: string;\n includeUsage?: boolean;\n headers: () => Record<string, string | undefined>;\n url: (options: { modelId: string; path: string }) => string;\n fetch?: FetchFunction;\n errorStructure?: ProviderErrorStructure<any>;\n\n /**\n * The supported URLs for the model.\n */\n supportedUrls?: () => LanguageModelV3['supportedUrls'];\n};\n\nexport class OpenAICompatibleCompletionLanguageModel\n implements LanguageModelV3\n{\n readonly specificationVersion = 'v3';\n\n readonly modelId: OpenAICompatibleCompletionModelId;\n private readonly config: OpenAICompatibleCompletionConfig;\n private readonly failedResponseHandler: ResponseHandler<APICallError>;\n private readonly chunkSchema; // type inferred via constructor\n\n constructor(\n modelId: OpenAICompatibleCompletionModelId,\n config: OpenAICompatibleCompletionConfig,\n ) {\n this.modelId = modelId;\n this.config = config;\n\n // initialize error handling:\n const errorStructure =\n config.errorStructure ?? defaultOpenAICompatibleErrorStructure;\n this.chunkSchema = createOpenAICompatibleCompletionChunkSchema(\n errorStructure.errorSchema,\n );\n this.failedResponseHandler = createJsonErrorResponseHandler(errorStructure);\n }\n\n get provider(): string {\n return this.config.provider;\n }\n\n private get providerOptionsName(): string {\n return this.config.provider.split('.')[0].trim();\n }\n\n get supportedUrls() {\n return this.config.supportedUrls?.() ?? {};\n }\n\n private async getArgs({\n prompt,\n maxOutputTokens,\n temperature,\n topP,\n topK,\n frequencyPenalty,\n presencePenalty,\n stopSequences: userStopSequences,\n responseFormat,\n seed,\n providerOptions,\n tools,\n toolChoice,\n }: LanguageModelV3CallOptions) {\n const warnings: SharedV3Warning[] = [];\n\n // Parse provider options\n const completionOptions =\n (await parseProviderOptions({\n provider: this.providerOptionsName,\n providerOptions,\n schema: openaiCompatibleCompletionProviderOptions,\n })) ?? {};\n\n if (topK != null) {\n warnings.push({ type: 'unsupported', feature: 'topK' });\n }\n\n if (tools?.length) {\n warnings.push({ type: 'unsupported', feature: 'tools' });\n }\n\n if (toolChoice != null) {\n warnings.push({ type: 'unsupported', feature: 'toolChoice' });\n }\n\n if (responseFormat != null && responseFormat.type !== 'text') {\n warnings.push({\n type: 'unsupported',\n feature: 'responseFormat',\n details: 'JSON response format is not supported.',\n });\n }\n\n const { prompt: completionPrompt, stopSequences } =\n convertToOpenAICompatibleCompletionPrompt({ prompt });\n\n const stop = [...(stopSequences ?? []), ...(userStopSequences ?? [])];\n\n return {\n args: {\n // model id:\n model: this.modelId,\n\n // model specific settings:\n echo: completionOptions.echo,\n logit_bias: completionOptions.logitBias,\n suffix: completionOptions.suffix,\n user: completionOptions.user,\n\n // standardized settings:\n max_tokens: maxOutputTokens,\n temperature,\n top_p: topP,\n frequency_penalty: frequencyPenalty,\n presence_penalty: presencePenalty,\n seed,\n ...providerOptions?.[this.providerOptionsName],\n\n // prompt:\n prompt: completionPrompt,\n\n // stop sequences:\n stop: stop.length > 0 ? stop : undefined,\n },\n warnings,\n };\n }\n\n async doGenerate(\n options: LanguageModelV3CallOptions,\n ): Promise<LanguageModelV3GenerateResult> {\n const { args, warnings } = await this.getArgs(options);\n\n const {\n responseHeaders,\n value: response,\n rawValue: rawResponse,\n } = await postJsonToApi({\n url: this.config.url({\n path: '/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body: args,\n failedResponseHandler: this.failedResponseHandler,\n successfulResponseHandler: createJsonResponseHandler(\n openaiCompatibleCompletionResponseSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n const choice = response.choices[0];\n const content: Array<LanguageModelV3Content> = [];\n\n // text content:\n if (choice.text != null && choice.text.length > 0) {\n content.push({ type: 'text', text: choice.text });\n }\n\n return {\n content,\n usage: convertOpenAICompatibleCompletionUsage(response.usage),\n finishReason: {\n unified: mapOpenAICompatibleFinishReason(choice.finish_reason),\n raw: choice.finish_reason,\n },\n request: { body: args },\n response: {\n ...getResponseMetadata(response),\n headers: responseHeaders,\n body: rawResponse,\n },\n warnings,\n };\n }\n\n async doStream(\n options: LanguageModelV3CallOptions,\n ): Promise<LanguageModelV3StreamResult> {\n const { args, warnings } = await this.getArgs(options);\n\n const body = {\n ...args,\n stream: true,\n\n // only include stream_options when in strict compatibility mode:\n stream_options: this.config.includeUsage\n ? { include_usage: true }\n : undefined,\n };\n\n const { responseHeaders, value: response } = await postJsonToApi({\n url: this.config.url({\n path: '/completions',\n modelId: this.modelId,\n }),\n headers: combineHeaders(this.config.headers(), options.headers),\n body,\n failedResponseHandler: this.failedResponseHandler,\n successfulResponseHandler: createEventSourceResponseHandler(\n this.chunkSchema,\n ),\n abortSignal: options.abortSignal,\n fetch: this.config.fetch,\n });\n\n let finishReason: LanguageModelV3FinishReason = {\n unified: 'other',\n raw: undefined,\n };\n let usage:\n | {\n prompt_tokens: number | undefined;\n completion_tokens: number | undefined;\n total_tokens: number | undefined;\n }\n | undefined = undefined;\n let isFirstChunk = true;\n\n return {\n stream: response.pipeThrough(\n new TransformStream<\n ParseResult<z.infer<typeof this.chunkSchema>>,\n LanguageModelV3StreamPart\n >({\n start(controller) {\n controller.enqueue({ type: 'stream-start', warnings });\n },\n\n transform(chunk, controller) {\n if (options.includeRawChunks) {\n controller.enqueue({ type: 'raw', rawValue: chunk.rawValue });\n }\n\n // handle failed chunk parsing / validation:\n if (!chunk.success) {\n finishReason = { unified: 'error', raw: undefined };\n controller.enqueue({ type: 'error', error: chunk.error });\n return;\n }\n\n const value = chunk.value;\n\n // handle error chunks:\n if ('error' in value) {\n finishReason = { unified: 'error', raw: undefined };\n controller.enqueue({ type: 'error', error: value.error });\n return;\n }\n\n if (isFirstChunk) {\n isFirstChunk = false;\n\n controller.enqueue({\n type: 'response-metadata',\n ...getResponseMetadata(value),\n });\n\n controller.enqueue({\n type: 'text-start',\n id: '0',\n });\n }\n\n if (value.usage != null) {\n usage = value.usage;\n }\n\n const choice = value.choices[0];\n\n if (choice?.finish_reason != null) {\n finishReason = {\n unified: mapOpenAICompatibleFinishReason(choice.finish_reason),\n raw: choice.finish_reason ?? undefined,\n };\n }\n\n if (choice?.text != null) {\n controller.enqueue({\n type: 'text-delta',\n id: '0',\n delta: choice.text,\n });\n }\n },\n\n flush(controller) {\n if (!isFirstChunk) {\n controller.enqueue({ type: 'text-end', id: '0' });\n }\n\n controller.enqueue({\n type: 'finish',\n finishReason,\n usage: convertOpenAICompatibleCompletionUsage(usage),\n });\n },\n }),\n ),\n request: { body },\n response: { headers: responseHeaders },\n };\n }\n}\n\nconst usageSchema = z.object({\n prompt_tokens: z.number(),\n completion_tokens: z.number(),\n total_tokens: z.number(),\n});\n\n// limited version of the schema, focussed on what is needed for the implementation\n// this approach limits breakages when the API changes and increases efficiency\nconst openaiCompatibleCompletionResponseSchema = z.object({\n id: z.string().nullish(),\n created: z.number().nullish(),\n model: z.string().nullish(),\n choices: z.array(\n z.object({\n text: z.string(),\n finish_reason: z.string(),\n }),\n ),\n usage: usageSchema.nullish(),\n});\n\n// limited version of the schema, focussed on what is needed for the implementation\n// this approach limits breakages when the API changes and increases efficiency\nconst createOpenAICompatibleCompletionChunkSchema = <\n ERROR_SCHEMA extends z.core.$ZodType,\n>(\n errorSchema: ERROR_SCHEMA,\n) =>\n z.union([\n z.object({\n id: z.string().nullish(),\n created: z.number().nullish(),\n model: z.string().nullish(),\n choices: z.array(\n z.object({\n text: z.string(),\n finish_reason: z.string().nullish(),\n index: z.number(),\n }),\n ),\n usage: usageSchema.nullish(),\n }),\n errorSchema,\n ]);\n","import { LanguageModelV3Usage } from '@ai-sdk/provider';\n\nexport function convertOpenAICompatibleCompletionUsage(\n usage:\n | {\n prompt_tokens?: number | null;\n completion_tokens?: number | null;\n }\n | undefined\n | null,\n): LanguageModelV3Usage {\n if (usage == null) {\n return {\n inputTokens: {\n total: undefined,\n noCache: undefined,\n cacheRead: undefined,\n cacheWrite: undefined,\n },\n outputTokens: {\n total: undefined,\n text: undefined,\n reasoning: undefined,\n },\n raw: undefined,\n };\n }\n\n const promptTokens = usage.prompt_tokens ?? 0;\n const completionTokens = usage.completion_tokens ?? 0;\n\n return {\n inputTokens: {\n total: promptTokens,\n noCache: promptTokens,\n cacheRead: undefined,\n cacheWrite: undefined,\n },\n outputTokens: {\n total: completionTokens,\n text: completionTokens,\n reasoning: undefined,\n },\n raw: usage,\n };\n}\n","import {\n InvalidPromptError,\n LanguageModelV3Prompt,\n UnsupportedFunctionalityError,\n} from '@ai-sdk/provider';\n\nexport function convertToOpenAICompatibleCompletionPrompt({\n prompt,\n user = 'user',\n assistant = 'assistant',\n}: {\n prompt: LanguageModelV3Prompt;\n user?: string;\n assistant?: string;\n}): {\n prompt: string;\n stopSequences?: string[];\n} {\n // transform to a chat message format:\n let text = '';\n\n // if first message is a system message, add it to the text:\n if (prompt[0].role === 'system') {\n text += `${prompt[0].content}\\n\\n`;\n prompt = prompt.slice(1);\n }\n\n for (const { role, content } of prompt) {\n switch (role) {\n case 'system': {\n throw new InvalidPromptError({\n message: 'Unexpected system message in prompt: ${content}',\n prompt,\n });\n }\n\n case 'user': {\n const userMessage = content\n .map(part => {\n switch (part.type) {\n case 'text': {\n return part.text;\n }\n }\n })\n .filter(Boolean)\n .join('');\n\n text += `${user}:\\n${userMessage}\\n\\n`;\n break;\n }\n\n case 'assistant': {\n const assistantMessage = content\n .map(part => {\n switch (part.type) {\n case 'text': {\n return part.text;\n }\n case 'tool-call': {\n throw new UnsupportedFunctionalityError({\n functionality: 'tool-call messages',\n });\n }\n }\n })\n .join('');\n\n text += `${assistant}:\\n${assistantMessage}\\n\\n`;\n break;\n }\n\n case 'tool': {\n throw new UnsupportedFunctionalityError({\n functionality: 'tool messages',\n });\n }\n\n default: {\n const _exhaustiveCheck: never = role;\n throw new Error(`Unsupported role: ${_exhaustiveCheck}`);\n }\n }\n }\n\n // Assistant message prefix:\n text += `${assistant}:\\n`;\n\n return {\n prompt: text,\n stopSequences: [`\\n${user}:`],\n };\n}\n","export function getResponseMetadata({\n id,\n model,\n created,\n}: {\n id?: string | undefined | null;\n created?: number | undefined | n