UNPKG

@ai-sdk/google

Version:

The **[Google Generative AI provider](https://ai-sdk.dev/providers/ai-sdk-providers/google-generative-ai)** for the [AI SDK](https://ai-sdk.dev/docs) contains language model support for the [Google Generative AI](https://ai.google/discover/generativeai/)

1,414 lines (1,398 loc) 71.1 kB
"use strict"; var __defProp = Object.defineProperty; var __getOwnPropDesc = Object.getOwnPropertyDescriptor; var __getOwnPropNames = Object.getOwnPropertyNames; var __hasOwnProp = Object.prototype.hasOwnProperty; var __export = (target, all) => { for (var name in all) __defProp(target, name, { get: all[name], enumerable: true }); }; var __copyProps = (to, from, except, desc) => { if (from && typeof from === "object" || typeof from === "function") { for (let key of __getOwnPropNames(from)) if (!__hasOwnProp.call(to, key) && key !== except) __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable }); } return to; }; var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod); // src/index.ts var src_exports = {}; __export(src_exports, { VERSION: () => VERSION, createGoogleGenerativeAI: () => createGoogleGenerativeAI, google: () => google }); module.exports = __toCommonJS(src_exports); // src/google-provider.ts var import_provider_utils15 = require("@ai-sdk/provider-utils"); // src/version.ts var VERSION = true ? "3.0.10" : "0.0.0-test"; // src/google-generative-ai-embedding-model.ts var import_provider = require("@ai-sdk/provider"); var import_provider_utils3 = require("@ai-sdk/provider-utils"); var import_v43 = require("zod/v4"); // src/google-error.ts var import_provider_utils = require("@ai-sdk/provider-utils"); var import_v4 = require("zod/v4"); var googleErrorDataSchema = (0, import_provider_utils.lazySchema)( () => (0, import_provider_utils.zodSchema)( import_v4.z.object({ error: import_v4.z.object({ code: import_v4.z.number().nullable(), message: import_v4.z.string(), status: import_v4.z.string() }) }) ) ); var googleFailedResponseHandler = (0, import_provider_utils.createJsonErrorResponseHandler)({ errorSchema: googleErrorDataSchema, errorToMessage: (data) => data.error.message }); // src/google-generative-ai-embedding-options.ts var import_provider_utils2 = require("@ai-sdk/provider-utils"); var import_v42 = require("zod/v4"); var googleGenerativeAIEmbeddingProviderOptions = (0, import_provider_utils2.lazySchema)( () => (0, import_provider_utils2.zodSchema)( import_v42.z.object({ /** * Optional. Optional reduced dimension for the output embedding. * If set, excessive values in the output embedding are truncated from the end. */ outputDimensionality: import_v42.z.number().optional(), /** * Optional. Specifies the task type for generating embeddings. * Supported task types: * - SEMANTIC_SIMILARITY: Optimized for text similarity. * - CLASSIFICATION: Optimized for text classification. * - CLUSTERING: Optimized for clustering texts based on similarity. * - RETRIEVAL_DOCUMENT: Optimized for document retrieval. * - RETRIEVAL_QUERY: Optimized for query-based retrieval. * - QUESTION_ANSWERING: Optimized for answering questions. * - FACT_VERIFICATION: Optimized for verifying factual information. * - CODE_RETRIEVAL_QUERY: Optimized for retrieving code blocks based on natural language queries. */ taskType: import_v42.z.enum([ "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY" ]).optional() }) ) ); // src/google-generative-ai-embedding-model.ts var GoogleGenerativeAIEmbeddingModel = class { constructor(modelId, config) { this.specificationVersion = "v3"; this.maxEmbeddingsPerCall = 2048; this.supportsParallelCalls = true; this.modelId = modelId; this.config = config; } get provider() { return this.config.provider; } async doEmbed({ values, headers, abortSignal, providerOptions }) { const googleOptions = await (0, import_provider_utils3.parseProviderOptions)({ provider: "google", providerOptions, schema: googleGenerativeAIEmbeddingProviderOptions }); if (values.length > this.maxEmbeddingsPerCall) { throw new import_provider.TooManyEmbeddingValuesForCallError({ provider: this.provider, modelId: this.modelId, maxEmbeddingsPerCall: this.maxEmbeddingsPerCall, values }); } const mergedHeaders = (0, import_provider_utils3.combineHeaders)( await (0, import_provider_utils3.resolve)(this.config.headers), headers ); if (values.length === 1) { const { responseHeaders: responseHeaders2, value: response2, rawValue: rawValue2 } = await (0, import_provider_utils3.postJsonToApi)({ url: `${this.config.baseURL}/models/${this.modelId}:embedContent`, headers: mergedHeaders, body: { model: `models/${this.modelId}`, content: { parts: [{ text: values[0] }] }, outputDimensionality: googleOptions == null ? void 0 : googleOptions.outputDimensionality, taskType: googleOptions == null ? void 0 : googleOptions.taskType }, failedResponseHandler: googleFailedResponseHandler, successfulResponseHandler: (0, import_provider_utils3.createJsonResponseHandler)( googleGenerativeAISingleEmbeddingResponseSchema ), abortSignal, fetch: this.config.fetch }); return { warnings: [], embeddings: [response2.embedding.values], usage: void 0, response: { headers: responseHeaders2, body: rawValue2 } }; } const { responseHeaders, value: response, rawValue } = await (0, import_provider_utils3.postJsonToApi)({ url: `${this.config.baseURL}/models/${this.modelId}:batchEmbedContents`, headers: mergedHeaders, body: { requests: values.map((value) => ({ model: `models/${this.modelId}`, content: { role: "user", parts: [{ text: value }] }, outputDimensionality: googleOptions == null ? void 0 : googleOptions.outputDimensionality, taskType: googleOptions == null ? void 0 : googleOptions.taskType })) }, failedResponseHandler: googleFailedResponseHandler, successfulResponseHandler: (0, import_provider_utils3.createJsonResponseHandler)( googleGenerativeAITextEmbeddingResponseSchema ), abortSignal, fetch: this.config.fetch }); return { warnings: [], embeddings: response.embeddings.map((item) => item.values), usage: void 0, response: { headers: responseHeaders, body: rawValue } }; } }; var googleGenerativeAITextEmbeddingResponseSchema = (0, import_provider_utils3.lazySchema)( () => (0, import_provider_utils3.zodSchema)( import_v43.z.object({ embeddings: import_v43.z.array(import_v43.z.object({ values: import_v43.z.array(import_v43.z.number()) })) }) ) ); var googleGenerativeAISingleEmbeddingResponseSchema = (0, import_provider_utils3.lazySchema)( () => (0, import_provider_utils3.zodSchema)( import_v43.z.object({ embedding: import_v43.z.object({ values: import_v43.z.array(import_v43.z.number()) }) }) ) ); // src/google-generative-ai-language-model.ts var import_provider_utils6 = require("@ai-sdk/provider-utils"); var import_v45 = require("zod/v4"); // src/convert-google-generative-ai-usage.ts function convertGoogleGenerativeAIUsage(usage) { var _a, _b, _c, _d; if (usage == null) { return { inputTokens: { total: void 0, noCache: void 0, cacheRead: void 0, cacheWrite: void 0 }, outputTokens: { total: void 0, text: void 0, reasoning: void 0 }, raw: void 0 }; } const promptTokens = (_a = usage.promptTokenCount) != null ? _a : 0; const candidatesTokens = (_b = usage.candidatesTokenCount) != null ? _b : 0; const cachedContentTokens = (_c = usage.cachedContentTokenCount) != null ? _c : 0; const thoughtsTokens = (_d = usage.thoughtsTokenCount) != null ? _d : 0; return { inputTokens: { total: promptTokens, noCache: promptTokens - cachedContentTokens, cacheRead: cachedContentTokens, cacheWrite: void 0 }, outputTokens: { total: candidatesTokens + thoughtsTokens, text: candidatesTokens, reasoning: thoughtsTokens }, raw: usage }; } // src/convert-json-schema-to-openapi-schema.ts function convertJSONSchemaToOpenAPISchema(jsonSchema, isRoot = true) { if (jsonSchema == null) { return void 0; } if (isEmptyObjectSchema(jsonSchema)) { if (isRoot) { return void 0; } if (typeof jsonSchema === "object" && jsonSchema.description) { return { type: "object", description: jsonSchema.description }; } return { type: "object" }; } if (typeof jsonSchema === "boolean") { return { type: "boolean", properties: {} }; } const { type, description, required, properties, items, allOf, anyOf, oneOf, format, const: constValue, minLength, enum: enumValues } = jsonSchema; const result = {}; if (description) result.description = description; if (required) result.required = required; if (format) result.format = format; if (constValue !== void 0) { result.enum = [constValue]; } if (type) { if (Array.isArray(type)) { const hasNull = type.includes("null"); const nonNullTypes = type.filter((t) => t !== "null"); if (nonNullTypes.length === 0) { result.type = "null"; } else { result.anyOf = nonNullTypes.map((t) => ({ type: t })); if (hasNull) { result.nullable = true; } } } else { result.type = type; } } if (enumValues !== void 0) { result.enum = enumValues; } if (properties != null) { result.properties = Object.entries(properties).reduce( (acc, [key, value]) => { acc[key] = convertJSONSchemaToOpenAPISchema(value, false); return acc; }, {} ); } if (items) { result.items = Array.isArray(items) ? items.map((item) => convertJSONSchemaToOpenAPISchema(item, false)) : convertJSONSchemaToOpenAPISchema(items, false); } if (allOf) { result.allOf = allOf.map( (item) => convertJSONSchemaToOpenAPISchema(item, false) ); } if (anyOf) { if (anyOf.some( (schema) => typeof schema === "object" && (schema == null ? void 0 : schema.type) === "null" )) { const nonNullSchemas = anyOf.filter( (schema) => !(typeof schema === "object" && (schema == null ? void 0 : schema.type) === "null") ); if (nonNullSchemas.length === 1) { const converted = convertJSONSchemaToOpenAPISchema( nonNullSchemas[0], false ); if (typeof converted === "object") { result.nullable = true; Object.assign(result, converted); } } else { result.anyOf = nonNullSchemas.map( (item) => convertJSONSchemaToOpenAPISchema(item, false) ); result.nullable = true; } } else { result.anyOf = anyOf.map( (item) => convertJSONSchemaToOpenAPISchema(item, false) ); } } if (oneOf) { result.oneOf = oneOf.map( (item) => convertJSONSchemaToOpenAPISchema(item, false) ); } if (minLength !== void 0) { result.minLength = minLength; } return result; } function isEmptyObjectSchema(jsonSchema) { return jsonSchema != null && typeof jsonSchema === "object" && jsonSchema.type === "object" && (jsonSchema.properties == null || Object.keys(jsonSchema.properties).length === 0) && !jsonSchema.additionalProperties; } // src/convert-to-google-generative-ai-messages.ts var import_provider2 = require("@ai-sdk/provider"); var import_provider_utils4 = require("@ai-sdk/provider-utils"); function convertToGoogleGenerativeAIMessages(prompt, options) { var _a, _b, _c; const systemInstructionParts = []; const contents = []; let systemMessagesAllowed = true; const isGemmaModel = (_a = options == null ? void 0 : options.isGemmaModel) != null ? _a : false; const providerOptionsName = (_b = options == null ? void 0 : options.providerOptionsName) != null ? _b : "google"; for (const { role, content } of prompt) { switch (role) { case "system": { if (!systemMessagesAllowed) { throw new import_provider2.UnsupportedFunctionalityError({ functionality: "system messages are only supported at the beginning of the conversation" }); } systemInstructionParts.push({ text: content }); break; } case "user": { systemMessagesAllowed = false; const parts = []; for (const part of content) { switch (part.type) { case "text": { parts.push({ text: part.text }); break; } case "file": { const mediaType = part.mediaType === "image/*" ? "image/jpeg" : part.mediaType; parts.push( part.data instanceof URL ? { fileData: { mimeType: mediaType, fileUri: part.data.toString() } } : { inlineData: { mimeType: mediaType, data: (0, import_provider_utils4.convertToBase64)(part.data) } } ); break; } } } contents.push({ role: "user", parts }); break; } case "assistant": { systemMessagesAllowed = false; contents.push({ role: "model", parts: content.map((part) => { var _a2; const providerOpts = (_a2 = part.providerOptions) == null ? void 0 : _a2[providerOptionsName]; const thoughtSignature = (providerOpts == null ? void 0 : providerOpts.thoughtSignature) != null ? String(providerOpts.thoughtSignature) : void 0; switch (part.type) { case "text": { return part.text.length === 0 ? void 0 : { text: part.text, thoughtSignature }; } case "reasoning": { return part.text.length === 0 ? void 0 : { text: part.text, thought: true, thoughtSignature }; } case "file": { if (part.data instanceof URL) { throw new import_provider2.UnsupportedFunctionalityError({ functionality: "File data URLs in assistant messages are not supported" }); } return { inlineData: { mimeType: part.mediaType, data: (0, import_provider_utils4.convertToBase64)(part.data) }, thoughtSignature }; } case "tool-call": { return { functionCall: { name: part.toolName, args: part.input }, thoughtSignature }; } } }).filter((part) => part !== void 0) }); break; } case "tool": { systemMessagesAllowed = false; const parts = []; for (const part of content) { if (part.type === "tool-approval-response") { continue; } const output = part.output; if (output.type === "content") { for (const contentPart of output.value) { switch (contentPart.type) { case "text": parts.push({ functionResponse: { name: part.toolName, response: { name: part.toolName, content: contentPart.text } } }); break; case "image-data": parts.push( { inlineData: { mimeType: contentPart.mediaType, data: contentPart.data } }, { text: "Tool executed successfully and returned this image as a response" } ); break; default: parts.push({ text: JSON.stringify(contentPart) }); break; } } } else { parts.push({ functionResponse: { name: part.toolName, response: { name: part.toolName, content: output.type === "execution-denied" ? (_c = output.reason) != null ? _c : "Tool execution denied." : output.value } } }); } } contents.push({ role: "user", parts }); break; } } } if (isGemmaModel && systemInstructionParts.length > 0 && contents.length > 0 && contents[0].role === "user") { const systemText = systemInstructionParts.map((part) => part.text).join("\n\n"); contents[0].parts.unshift({ text: systemText + "\n\n" }); } return { systemInstruction: systemInstructionParts.length > 0 && !isGemmaModel ? { parts: systemInstructionParts } : void 0, contents }; } // src/get-model-path.ts function getModelPath(modelId) { return modelId.includes("/") ? modelId : `models/${modelId}`; } // src/google-generative-ai-options.ts var import_provider_utils5 = require("@ai-sdk/provider-utils"); var import_v44 = require("zod/v4"); var googleGenerativeAIProviderOptions = (0, import_provider_utils5.lazySchema)( () => (0, import_provider_utils5.zodSchema)( import_v44.z.object({ responseModalities: import_v44.z.array(import_v44.z.enum(["TEXT", "IMAGE"])).optional(), thinkingConfig: import_v44.z.object({ thinkingBudget: import_v44.z.number().optional(), includeThoughts: import_v44.z.boolean().optional(), // https://ai.google.dev/gemini-api/docs/gemini-3?thinking=high#thinking_level thinkingLevel: import_v44.z.enum(["minimal", "low", "medium", "high"]).optional() }).optional(), /** * Optional. * The name of the cached content used as context to serve the prediction. * Format: cachedContents/{cachedContent} */ cachedContent: import_v44.z.string().optional(), /** * Optional. Enable structured output. Default is true. * * This is useful when the JSON Schema contains elements that are * not supported by the OpenAPI schema version that * Google Generative AI uses. You can use this to disable * structured outputs if you need to. */ structuredOutputs: import_v44.z.boolean().optional(), /** * Optional. A list of unique safety settings for blocking unsafe content. */ safetySettings: import_v44.z.array( import_v44.z.object({ category: import_v44.z.enum([ "HARM_CATEGORY_UNSPECIFIED", "HARM_CATEGORY_HATE_SPEECH", "HARM_CATEGORY_DANGEROUS_CONTENT", "HARM_CATEGORY_HARASSMENT", "HARM_CATEGORY_SEXUALLY_EXPLICIT", "HARM_CATEGORY_CIVIC_INTEGRITY" ]), threshold: import_v44.z.enum([ "HARM_BLOCK_THRESHOLD_UNSPECIFIED", "BLOCK_LOW_AND_ABOVE", "BLOCK_MEDIUM_AND_ABOVE", "BLOCK_ONLY_HIGH", "BLOCK_NONE", "OFF" ]) }) ).optional(), threshold: import_v44.z.enum([ "HARM_BLOCK_THRESHOLD_UNSPECIFIED", "BLOCK_LOW_AND_ABOVE", "BLOCK_MEDIUM_AND_ABOVE", "BLOCK_ONLY_HIGH", "BLOCK_NONE", "OFF" ]).optional(), /** * Optional. Enables timestamp understanding for audio-only files. * * https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/audio-understanding */ audioTimestamp: import_v44.z.boolean().optional(), /** * Optional. Defines labels used in billing reports. Available on Vertex AI only. * * https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/add-labels-to-api-calls */ labels: import_v44.z.record(import_v44.z.string(), import_v44.z.string()).optional(), /** * Optional. If specified, the media resolution specified will be used. * * https://ai.google.dev/api/generate-content#MediaResolution */ mediaResolution: import_v44.z.enum([ "MEDIA_RESOLUTION_UNSPECIFIED", "MEDIA_RESOLUTION_LOW", "MEDIA_RESOLUTION_MEDIUM", "MEDIA_RESOLUTION_HIGH" ]).optional(), /** * Optional. Configures the image generation aspect ratio for Gemini models. * * https://ai.google.dev/gemini-api/docs/image-generation#aspect_ratios */ imageConfig: import_v44.z.object({ aspectRatio: import_v44.z.enum([ "1:1", "2:3", "3:2", "3:4", "4:3", "4:5", "5:4", "9:16", "16:9", "21:9" ]).optional(), imageSize: import_v44.z.enum(["1K", "2K", "4K"]).optional() }).optional(), /** * Optional. Configuration for grounding retrieval. * Used to provide location context for Google Maps and Google Search grounding. * * https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-google-maps */ retrievalConfig: import_v44.z.object({ latLng: import_v44.z.object({ latitude: import_v44.z.number(), longitude: import_v44.z.number() }).optional() }).optional() }) ) ); // src/google-prepare-tools.ts var import_provider3 = require("@ai-sdk/provider"); function prepareTools({ tools, toolChoice, modelId }) { var _a; tools = (tools == null ? void 0 : tools.length) ? tools : void 0; const toolWarnings = []; const isLatest = [ "gemini-flash-latest", "gemini-flash-lite-latest", "gemini-pro-latest" ].some((id) => id === modelId); const isGemini2orNewer = modelId.includes("gemini-2") || modelId.includes("gemini-3") || isLatest; const supportsDynamicRetrieval = modelId.includes("gemini-1.5-flash") && !modelId.includes("-8b"); const supportsFileSearch = modelId.includes("gemini-2.5") || modelId.includes("gemini-3"); if (tools == null) { return { tools: void 0, toolConfig: void 0, toolWarnings }; } const hasFunctionTools = tools.some((tool) => tool.type === "function"); const hasProviderTools = tools.some((tool) => tool.type === "provider"); if (hasFunctionTools && hasProviderTools) { toolWarnings.push({ type: "unsupported", feature: `combination of function and provider-defined tools` }); } if (hasProviderTools) { const googleTools2 = []; const ProviderTools = tools.filter((tool) => tool.type === "provider"); ProviderTools.forEach((tool) => { switch (tool.id) { case "google.google_search": if (isGemini2orNewer) { googleTools2.push({ googleSearch: {} }); } else if (supportsDynamicRetrieval) { googleTools2.push({ googleSearchRetrieval: { dynamicRetrievalConfig: { mode: tool.args.mode, dynamicThreshold: tool.args.dynamicThreshold } } }); } else { googleTools2.push({ googleSearchRetrieval: {} }); } break; case "google.enterprise_web_search": if (isGemini2orNewer) { googleTools2.push({ enterpriseWebSearch: {} }); } else { toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}`, details: "Enterprise Web Search requires Gemini 2.0 or newer." }); } break; case "google.url_context": if (isGemini2orNewer) { googleTools2.push({ urlContext: {} }); } else { toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}`, details: "The URL context tool is not supported with other Gemini models than Gemini 2." }); } break; case "google.code_execution": if (isGemini2orNewer) { googleTools2.push({ codeExecution: {} }); } else { toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}`, details: "The code execution tools is not supported with other Gemini models than Gemini 2." }); } break; case "google.file_search": if (supportsFileSearch) { googleTools2.push({ fileSearch: { ...tool.args } }); } else { toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}`, details: "The file search tool is only supported with Gemini 2.5 models and Gemini 3 models." }); } break; case "google.vertex_rag_store": if (isGemini2orNewer) { googleTools2.push({ retrieval: { vertex_rag_store: { rag_resources: { rag_corpus: tool.args.ragCorpus }, similarity_top_k: tool.args.topK } } }); } else { toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}`, details: "The RAG store tool is not supported with other Gemini models than Gemini 2." }); } break; case "google.google_maps": if (isGemini2orNewer) { googleTools2.push({ googleMaps: {} }); } else { toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}`, details: "The Google Maps grounding tool is not supported with Gemini models other than Gemini 2 or newer." }); } break; default: toolWarnings.push({ type: "unsupported", feature: `provider-defined tool ${tool.id}` }); break; } }); return { tools: googleTools2.length > 0 ? googleTools2 : void 0, toolConfig: void 0, toolWarnings }; } const functionDeclarations = []; for (const tool of tools) { switch (tool.type) { case "function": functionDeclarations.push({ name: tool.name, description: (_a = tool.description) != null ? _a : "", parameters: convertJSONSchemaToOpenAPISchema(tool.inputSchema) }); break; default: toolWarnings.push({ type: "unsupported", feature: `function tool ${tool.name}` }); break; } } if (toolChoice == null) { return { tools: [{ functionDeclarations }], toolConfig: void 0, toolWarnings }; } const type = toolChoice.type; switch (type) { case "auto": return { tools: [{ functionDeclarations }], toolConfig: { functionCallingConfig: { mode: "AUTO" } }, toolWarnings }; case "none": return { tools: [{ functionDeclarations }], toolConfig: { functionCallingConfig: { mode: "NONE" } }, toolWarnings }; case "required": return { tools: [{ functionDeclarations }], toolConfig: { functionCallingConfig: { mode: "ANY" } }, toolWarnings }; case "tool": return { tools: [{ functionDeclarations }], toolConfig: { functionCallingConfig: { mode: "ANY", allowedFunctionNames: [toolChoice.toolName] } }, toolWarnings }; default: { const _exhaustiveCheck = type; throw new import_provider3.UnsupportedFunctionalityError({ functionality: `tool choice type: ${_exhaustiveCheck}` }); } } } // src/map-google-generative-ai-finish-reason.ts function mapGoogleGenerativeAIFinishReason({ finishReason, hasToolCalls }) { switch (finishReason) { case "STOP": return hasToolCalls ? "tool-calls" : "stop"; case "MAX_TOKENS": return "length"; case "IMAGE_SAFETY": case "RECITATION": case "SAFETY": case "BLOCKLIST": case "PROHIBITED_CONTENT": case "SPII": return "content-filter"; case "MALFORMED_FUNCTION_CALL": return "error"; case "FINISH_REASON_UNSPECIFIED": case "OTHER": default: return "other"; } } // src/google-generative-ai-language-model.ts var GoogleGenerativeAILanguageModel = class { constructor(modelId, config) { this.specificationVersion = "v3"; var _a; this.modelId = modelId; this.config = config; this.generateId = (_a = config.generateId) != null ? _a : import_provider_utils6.generateId; } get provider() { return this.config.provider; } get supportedUrls() { var _a, _b, _c; return (_c = (_b = (_a = this.config).supportedUrls) == null ? void 0 : _b.call(_a)) != null ? _c : {}; } async getArgs({ prompt, maxOutputTokens, temperature, topP, topK, frequencyPenalty, presencePenalty, stopSequences, responseFormat, seed, tools, toolChoice, providerOptions }) { var _a; const warnings = []; const providerOptionsName = this.config.provider.includes("vertex") ? "vertex" : "google"; let googleOptions = await (0, import_provider_utils6.parseProviderOptions)({ provider: providerOptionsName, providerOptions, schema: googleGenerativeAIProviderOptions }); if (googleOptions == null && providerOptionsName !== "google") { googleOptions = await (0, import_provider_utils6.parseProviderOptions)({ provider: "google", providerOptions, schema: googleGenerativeAIProviderOptions }); } if ((tools == null ? void 0 : tools.some( (tool) => tool.type === "provider" && tool.id === "google.vertex_rag_store" )) && !this.config.provider.startsWith("google.vertex.")) { warnings.push({ type: "other", message: `The 'vertex_rag_store' tool is only supported with the Google Vertex provider and might not be supported or could behave unexpectedly with the current Google provider (${this.config.provider}).` }); } const isGemmaModel = this.modelId.toLowerCase().startsWith("gemma-"); const { contents, systemInstruction } = convertToGoogleGenerativeAIMessages( prompt, { isGemmaModel, providerOptionsName } ); const { tools: googleTools2, toolConfig: googleToolConfig, toolWarnings } = prepareTools({ tools, toolChoice, modelId: this.modelId }); return { args: { generationConfig: { // standardized settings: maxOutputTokens, temperature, topK, topP, frequencyPenalty, presencePenalty, stopSequences, seed, // response format: responseMimeType: (responseFormat == null ? void 0 : responseFormat.type) === "json" ? "application/json" : void 0, responseSchema: (responseFormat == null ? void 0 : responseFormat.type) === "json" && responseFormat.schema != null && // Google GenAI does not support all OpenAPI Schema features, // so this is needed as an escape hatch: // TODO convert into provider option ((_a = googleOptions == null ? void 0 : googleOptions.structuredOutputs) != null ? _a : true) ? convertJSONSchemaToOpenAPISchema(responseFormat.schema) : void 0, ...(googleOptions == null ? void 0 : googleOptions.audioTimestamp) && { audioTimestamp: googleOptions.audioTimestamp }, // provider options: responseModalities: googleOptions == null ? void 0 : googleOptions.responseModalities, thinkingConfig: googleOptions == null ? void 0 : googleOptions.thinkingConfig, ...(googleOptions == null ? void 0 : googleOptions.mediaResolution) && { mediaResolution: googleOptions.mediaResolution }, ...(googleOptions == null ? void 0 : googleOptions.imageConfig) && { imageConfig: googleOptions.imageConfig } }, contents, systemInstruction: isGemmaModel ? void 0 : systemInstruction, safetySettings: googleOptions == null ? void 0 : googleOptions.safetySettings, tools: googleTools2, toolConfig: (googleOptions == null ? void 0 : googleOptions.retrievalConfig) ? { ...googleToolConfig, retrievalConfig: googleOptions.retrievalConfig } : googleToolConfig, cachedContent: googleOptions == null ? void 0 : googleOptions.cachedContent, labels: googleOptions == null ? void 0 : googleOptions.labels }, warnings: [...warnings, ...toolWarnings], providerOptionsName }; } async doGenerate(options) { var _a, _b, _c, _d, _e, _f, _g, _h, _i; const { args, warnings, providerOptionsName } = await this.getArgs(options); const mergedHeaders = (0, import_provider_utils6.combineHeaders)( await (0, import_provider_utils6.resolve)(this.config.headers), options.headers ); const { responseHeaders, value: response, rawValue: rawResponse } = await (0, import_provider_utils6.postJsonToApi)({ url: `${this.config.baseURL}/${getModelPath( this.modelId )}:generateContent`, headers: mergedHeaders, body: args, failedResponseHandler: googleFailedResponseHandler, successfulResponseHandler: (0, import_provider_utils6.createJsonResponseHandler)(responseSchema), abortSignal: options.abortSignal, fetch: this.config.fetch }); const candidate = response.candidates[0]; const content = []; const parts = (_b = (_a = candidate.content) == null ? void 0 : _a.parts) != null ? _b : []; const usageMetadata = response.usageMetadata; let lastCodeExecutionToolCallId; for (const part of parts) { if ("executableCode" in part && ((_c = part.executableCode) == null ? void 0 : _c.code)) { const toolCallId = this.config.generateId(); lastCodeExecutionToolCallId = toolCallId; content.push({ type: "tool-call", toolCallId, toolName: "code_execution", input: JSON.stringify(part.executableCode), providerExecuted: true }); } else if ("codeExecutionResult" in part && part.codeExecutionResult) { content.push({ type: "tool-result", // Assumes a result directly follows its corresponding call part. toolCallId: lastCodeExecutionToolCallId, toolName: "code_execution", result: { outcome: part.codeExecutionResult.outcome, output: part.codeExecutionResult.output } }); lastCodeExecutionToolCallId = void 0; } else if ("text" in part && part.text != null && part.text.length > 0) { content.push({ type: part.thought === true ? "reasoning" : "text", text: part.text, providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } else if ("functionCall" in part) { content.push({ type: "tool-call", toolCallId: this.config.generateId(), toolName: part.functionCall.name, input: JSON.stringify(part.functionCall.args), providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } else if ("inlineData" in part) { content.push({ type: "file", data: part.inlineData.data, mediaType: part.inlineData.mimeType, providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } } const sources = (_d = extractSources({ groundingMetadata: candidate.groundingMetadata, generateId: this.config.generateId })) != null ? _d : []; for (const source of sources) { content.push(source); } return { content, finishReason: { unified: mapGoogleGenerativeAIFinishReason({ finishReason: candidate.finishReason, // Only count client-executed tool calls for finish reason determination. hasToolCalls: content.some( (part) => part.type === "tool-call" && !part.providerExecuted ) }), raw: (_e = candidate.finishReason) != null ? _e : void 0 }, usage: convertGoogleGenerativeAIUsage(usageMetadata), warnings, providerMetadata: { [providerOptionsName]: { promptFeedback: (_f = response.promptFeedback) != null ? _f : null, groundingMetadata: (_g = candidate.groundingMetadata) != null ? _g : null, urlContextMetadata: (_h = candidate.urlContextMetadata) != null ? _h : null, safetyRatings: (_i = candidate.safetyRatings) != null ? _i : null, usageMetadata: usageMetadata != null ? usageMetadata : null } }, request: { body: args }, response: { // TODO timestamp, model id, id headers: responseHeaders, body: rawResponse } }; } async doStream(options) { const { args, warnings, providerOptionsName } = await this.getArgs(options); const headers = (0, import_provider_utils6.combineHeaders)( await (0, import_provider_utils6.resolve)(this.config.headers), options.headers ); const { responseHeaders, value: response } = await (0, import_provider_utils6.postJsonToApi)({ url: `${this.config.baseURL}/${getModelPath( this.modelId )}:streamGenerateContent?alt=sse`, headers, body: args, failedResponseHandler: googleFailedResponseHandler, successfulResponseHandler: (0, import_provider_utils6.createEventSourceResponseHandler)(chunkSchema), abortSignal: options.abortSignal, fetch: this.config.fetch }); let finishReason = { unified: "other", raw: void 0 }; let usage = void 0; let providerMetadata = void 0; const generateId3 = this.config.generateId; let hasToolCalls = false; let currentTextBlockId = null; let currentReasoningBlockId = null; let blockCounter = 0; const emittedSourceUrls = /* @__PURE__ */ new Set(); let lastCodeExecutionToolCallId; return { stream: response.pipeThrough( new TransformStream({ start(controller) { controller.enqueue({ type: "stream-start", warnings }); }, transform(chunk, controller) { var _a, _b, _c, _d, _e, _f, _g; if (options.includeRawChunks) { controller.enqueue({ type: "raw", rawValue: chunk.rawValue }); } if (!chunk.success) { controller.enqueue({ type: "error", error: chunk.error }); return; } const value = chunk.value; const usageMetadata = value.usageMetadata; if (usageMetadata != null) { usage = usageMetadata; } const candidate = (_a = value.candidates) == null ? void 0 : _a[0]; if (candidate == null) { return; } const content = candidate.content; const sources = extractSources({ groundingMetadata: candidate.groundingMetadata, generateId: generateId3 }); if (sources != null) { for (const source of sources) { if (source.sourceType === "url" && !emittedSourceUrls.has(source.url)) { emittedSourceUrls.add(source.url); controller.enqueue(source); } } } if (content != null) { const parts = (_b = content.parts) != null ? _b : []; for (const part of parts) { if ("executableCode" in part && ((_c = part.executableCode) == null ? void 0 : _c.code)) { const toolCallId = generateId3(); lastCodeExecutionToolCallId = toolCallId; controller.enqueue({ type: "tool-call", toolCallId, toolName: "code_execution", input: JSON.stringify(part.executableCode), providerExecuted: true }); } else if ("codeExecutionResult" in part && part.codeExecutionResult) { const toolCallId = lastCodeExecutionToolCallId; if (toolCallId) { controller.enqueue({ type: "tool-result", toolCallId, toolName: "code_execution", result: { outcome: part.codeExecutionResult.outcome, output: part.codeExecutionResult.output } }); lastCodeExecutionToolCallId = void 0; } } else if ("text" in part && part.text != null && part.text.length > 0) { if (part.thought === true) { if (currentTextBlockId !== null) { controller.enqueue({ type: "text-end", id: currentTextBlockId }); currentTextBlockId = null; } if (currentReasoningBlockId === null) { currentReasoningBlockId = String(blockCounter++); controller.enqueue({ type: "reasoning-start", id: currentReasoningBlockId, providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } controller.enqueue({ type: "reasoning-delta", id: currentReasoningBlockId, delta: part.text, providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } else { if (currentReasoningBlockId !== null) { controller.enqueue({ type: "reasoning-end", id: currentReasoningBlockId }); currentReasoningBlockId = null; } if (currentTextBlockId === null) { currentTextBlockId = String(blockCounter++); controller.enqueue({ type: "text-start", id: currentTextBlockId, providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } controller.enqueue({ type: "text-delta", id: currentTextBlockId, delta: part.text, providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 }); } } else if ("inlineData" in part) { controller.enqueue({ type: "file", mediaType: part.inlineData.mimeType, data: part.inlineData.data }); } } const toolCallDeltas = getToolCallsFromParts({ parts: content.parts, generateId: generateId3, providerOptionsName }); if (toolCallDeltas != null) { for (const toolCall of toolCallDeltas) { controller.enqueue({ type: "tool-input-start", id: toolCall.toolCallId, toolName: toolCall.toolName, providerMetadata: toolCall.providerMetadata }); controller.enqueue({ type: "tool-input-delta", id: toolCall.toolCallId, delta: toolCall.args, providerMetadata: toolCall.providerMetadata }); controller.enqueue({ type: "tool-input-end", id: toolCall.toolCallId, providerMetadata: toolCall.providerMetadata }); controller.enqueue({ type: "tool-call", toolCallId: toolCall.toolCallId, toolName: toolCall.toolName, input: toolCall.args, providerMetadata: toolCall.providerMetadata }); hasToolCalls = true; } } } if (candidate.finishReason != null) { finishReason = { unified: mapGoogleGenerativeAIFinishReason({ finishReason: candidate.finishReason, hasToolCalls }), raw: candidate.finishReason }; providerMetadata = { [providerOptionsName]: { promptFeedback: (_d = value.promptFeedback) != null ? _d : null, groundingMetadata: (_e = candidate.groundingMetadata) != null ? _e : null, urlContextMetadata: (_f = candidate.urlContextMetadata) != null ? _f : null, safetyRatings: (_g = candidate.safetyRatings) != null ? _g : null } }; if (usageMetadata != null) { providerMetadata[providerOptionsName].usageMetadata = usageMetadata; } } }, flush(controller) { if (currentTextBlockId !== null) { controller.enqueue({ type: "text-end", id: currentTextBlockId }); } if (currentReasoningBlockId !== null) { controller.enqueue({ type: "reasoning-end", id: currentReasoningBlockId }); } controller.enqueue({ type: "finish", finishReason, usage: convertGoogleGenerativeAIUsage(usage), providerMetadata }); } }) ), response: { headers: responseHeaders }, request: { body: args } }; } }; function getToolCallsFromParts({ parts, generateId: generateId3, providerOptionsName }) { const functionCallParts = parts == null ? void 0 : parts.filter( (part) => "functionCall" in part ); return functionCallParts == null || functionCallParts.length === 0 ? void 0 : functionCallParts.map((part) => ({ type: "tool-call", toolCallId: generateId3(), toolName: part.functionCall.name, args: JSON.stringify(part.functionCall.args), providerMetadata: part.thoughtSignature ? { [providerOptionsName]: { thoughtSignature: part.thoughtSignature } } : void 0 })); } function extractSources({ groundingMetadata, generateId: generateId3 }) { var _a, _b, _c, _d, _e; if (!(groundingMetadata == null ? void 0 : groundingMetadata.groundingChunks)) { return void 0; } const sources = []; for (const chunk of groundingMetadata.groundingChunks) { if (chunk.web != null) { sources.push({ type: "source", sourceType: "url", id: generateId3(), url: chunk.web.uri, title: (_a = chunk.web.title) != null ? _a : void 0 }); } else if (chunk.retrievedContext != null) { const uri = chunk.retrievedContext.uri; const file