@ai-sdk/google
Version:
The **[Google Generative AI provider](https://ai-sdk.dev/providers/ai-sdk-providers/google-generative-ai)** for the [AI SDK](https://ai-sdk.dev/docs) contains language model support for the [Google Generative AI](https://ai.google/discover/generativeai/)
1,406 lines (1,385 loc) • 51.4 kB
JavaScript
"use strict";
var __defProp = Object.defineProperty;
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
var __getOwnPropNames = Object.getOwnPropertyNames;
var __hasOwnProp = Object.prototype.hasOwnProperty;
var __export = (target, all) => {
for (var name in all)
__defProp(target, name, { get: all[name], enumerable: true });
};
var __copyProps = (to, from, except, desc) => {
if (from && typeof from === "object" || typeof from === "function") {
for (let key of __getOwnPropNames(from))
if (!__hasOwnProp.call(to, key) && key !== except)
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
}
return to;
};
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
// src/index.ts
var src_exports = {};
__export(src_exports, {
createGoogleGenerativeAI: () => createGoogleGenerativeAI,
google: () => google
});
module.exports = __toCommonJS(src_exports);
// src/google-provider.ts
var import_provider_utils9 = require("@ai-sdk/provider-utils");
// src/google-generative-ai-embedding-model.ts
var import_provider = require("@ai-sdk/provider");
var import_provider_utils2 = require("@ai-sdk/provider-utils");
var import_v43 = require("zod/v4");
// src/google-error.ts
var import_provider_utils = require("@ai-sdk/provider-utils");
var import_v4 = require("zod/v4");
var googleErrorDataSchema = import_v4.z.object({
error: import_v4.z.object({
code: import_v4.z.number().nullable(),
message: import_v4.z.string(),
status: import_v4.z.string()
})
});
var googleFailedResponseHandler = (0, import_provider_utils.createJsonErrorResponseHandler)({
errorSchema: googleErrorDataSchema,
errorToMessage: (data) => data.error.message
});
// src/google-generative-ai-embedding-options.ts
var import_v42 = require("zod/v4");
var googleGenerativeAIEmbeddingProviderOptions = import_v42.z.object({
/**
* Optional. Optional reduced dimension for the output embedding.
* If set, excessive values in the output embedding are truncated from the end.
*/
outputDimensionality: import_v42.z.number().optional(),
/**
* Optional. Specifies the task type for generating embeddings.
* Supported task types:
* - SEMANTIC_SIMILARITY: Optimized for text similarity.
* - CLASSIFICATION: Optimized for text classification.
* - CLUSTERING: Optimized for clustering texts based on similarity.
* - RETRIEVAL_DOCUMENT: Optimized for document retrieval.
* - RETRIEVAL_QUERY: Optimized for query-based retrieval.
* - QUESTION_ANSWERING: Optimized for answering questions.
* - FACT_VERIFICATION: Optimized for verifying factual information.
* - CODE_RETRIEVAL_QUERY: Optimized for retrieving code blocks based on natural language queries.
*/
taskType: import_v42.z.enum([
"SEMANTIC_SIMILARITY",
"CLASSIFICATION",
"CLUSTERING",
"RETRIEVAL_DOCUMENT",
"RETRIEVAL_QUERY",
"QUESTION_ANSWERING",
"FACT_VERIFICATION",
"CODE_RETRIEVAL_QUERY"
]).optional()
});
// src/google-generative-ai-embedding-model.ts
var GoogleGenerativeAIEmbeddingModel = class {
constructor(modelId, config) {
this.specificationVersion = "v2";
this.maxEmbeddingsPerCall = 2048;
this.supportsParallelCalls = true;
this.modelId = modelId;
this.config = config;
}
get provider() {
return this.config.provider;
}
async doEmbed({
values,
headers,
abortSignal,
providerOptions
}) {
const googleOptions = await (0, import_provider_utils2.parseProviderOptions)({
provider: "google",
providerOptions,
schema: googleGenerativeAIEmbeddingProviderOptions
});
if (values.length > this.maxEmbeddingsPerCall) {
throw new import_provider.TooManyEmbeddingValuesForCallError({
provider: this.provider,
modelId: this.modelId,
maxEmbeddingsPerCall: this.maxEmbeddingsPerCall,
values
});
}
const mergedHeaders = (0, import_provider_utils2.combineHeaders)(
await (0, import_provider_utils2.resolve)(this.config.headers),
headers
);
if (values.length === 1) {
const {
responseHeaders: responseHeaders2,
value: response2,
rawValue: rawValue2
} = await (0, import_provider_utils2.postJsonToApi)({
url: `${this.config.baseURL}/models/${this.modelId}:embedContent`,
headers: mergedHeaders,
body: {
model: `models/${this.modelId}`,
content: {
parts: [{ text: values[0] }]
},
outputDimensionality: googleOptions == null ? void 0 : googleOptions.outputDimensionality,
taskType: googleOptions == null ? void 0 : googleOptions.taskType
},
failedResponseHandler: googleFailedResponseHandler,
successfulResponseHandler: (0, import_provider_utils2.createJsonResponseHandler)(
googleGenerativeAISingleEmbeddingResponseSchema
),
abortSignal,
fetch: this.config.fetch
});
return {
embeddings: [response2.embedding.values],
usage: void 0,
response: { headers: responseHeaders2, body: rawValue2 }
};
}
const {
responseHeaders,
value: response,
rawValue
} = await (0, import_provider_utils2.postJsonToApi)({
url: `${this.config.baseURL}/models/${this.modelId}:batchEmbedContents`,
headers: mergedHeaders,
body: {
requests: values.map((value) => ({
model: `models/${this.modelId}`,
content: { role: "user", parts: [{ text: value }] },
outputDimensionality: googleOptions == null ? void 0 : googleOptions.outputDimensionality,
taskType: googleOptions == null ? void 0 : googleOptions.taskType
}))
},
failedResponseHandler: googleFailedResponseHandler,
successfulResponseHandler: (0, import_provider_utils2.createJsonResponseHandler)(
googleGenerativeAITextEmbeddingResponseSchema
),
abortSignal,
fetch: this.config.fetch
});
return {
embeddings: response.embeddings.map((item) => item.values),
usage: void 0,
response: { headers: responseHeaders, body: rawValue }
};
}
};
var googleGenerativeAITextEmbeddingResponseSchema = import_v43.z.object({
embeddings: import_v43.z.array(import_v43.z.object({ values: import_v43.z.array(import_v43.z.number()) }))
});
var googleGenerativeAISingleEmbeddingResponseSchema = import_v43.z.object({
embedding: import_v43.z.object({ values: import_v43.z.array(import_v43.z.number()) })
});
// src/google-generative-ai-language-model.ts
var import_provider_utils6 = require("@ai-sdk/provider-utils");
var import_v47 = require("zod/v4");
// src/convert-json-schema-to-openapi-schema.ts
function convertJSONSchemaToOpenAPISchema(jsonSchema) {
if (jsonSchema == null || isEmptyObjectSchema(jsonSchema)) {
return void 0;
}
if (typeof jsonSchema === "boolean") {
return { type: "boolean", properties: {} };
}
const {
type,
description,
required,
properties,
items,
allOf,
anyOf,
oneOf,
format,
const: constValue,
minLength,
enum: enumValues
} = jsonSchema;
const result = {};
if (description)
result.description = description;
if (required)
result.required = required;
if (format)
result.format = format;
if (constValue !== void 0) {
result.enum = [constValue];
}
if (type) {
if (Array.isArray(type)) {
if (type.includes("null")) {
result.type = type.filter((t) => t !== "null")[0];
result.nullable = true;
} else {
result.type = type;
}
} else if (type === "null") {
result.type = "null";
} else {
result.type = type;
}
}
if (enumValues !== void 0) {
result.enum = enumValues;
}
if (properties != null) {
result.properties = Object.entries(properties).reduce(
(acc, [key, value]) => {
acc[key] = convertJSONSchemaToOpenAPISchema(value);
return acc;
},
{}
);
}
if (items) {
result.items = Array.isArray(items) ? items.map(convertJSONSchemaToOpenAPISchema) : convertJSONSchemaToOpenAPISchema(items);
}
if (allOf) {
result.allOf = allOf.map(convertJSONSchemaToOpenAPISchema);
}
if (anyOf) {
if (anyOf.some(
(schema) => typeof schema === "object" && (schema == null ? void 0 : schema.type) === "null"
)) {
const nonNullSchemas = anyOf.filter(
(schema) => !(typeof schema === "object" && (schema == null ? void 0 : schema.type) === "null")
);
if (nonNullSchemas.length === 1) {
const converted = convertJSONSchemaToOpenAPISchema(nonNullSchemas[0]);
if (typeof converted === "object") {
result.nullable = true;
Object.assign(result, converted);
}
} else {
result.anyOf = nonNullSchemas.map(convertJSONSchemaToOpenAPISchema);
result.nullable = true;
}
} else {
result.anyOf = anyOf.map(convertJSONSchemaToOpenAPISchema);
}
}
if (oneOf) {
result.oneOf = oneOf.map(convertJSONSchemaToOpenAPISchema);
}
if (minLength !== void 0) {
result.minLength = minLength;
}
return result;
}
function isEmptyObjectSchema(jsonSchema) {
return jsonSchema != null && typeof jsonSchema === "object" && jsonSchema.type === "object" && (jsonSchema.properties == null || Object.keys(jsonSchema.properties).length === 0) && !jsonSchema.additionalProperties;
}
// src/convert-to-google-generative-ai-messages.ts
var import_provider2 = require("@ai-sdk/provider");
var import_provider_utils3 = require("@ai-sdk/provider-utils");
function convertToGoogleGenerativeAIMessages(prompt, options) {
var _a;
const systemInstructionParts = [];
const contents = [];
let systemMessagesAllowed = true;
const isGemmaModel = (_a = options == null ? void 0 : options.isGemmaModel) != null ? _a : false;
for (const { role, content } of prompt) {
switch (role) {
case "system": {
if (!systemMessagesAllowed) {
throw new import_provider2.UnsupportedFunctionalityError({
functionality: "system messages are only supported at the beginning of the conversation"
});
}
systemInstructionParts.push({ text: content });
break;
}
case "user": {
systemMessagesAllowed = false;
const parts = [];
for (const part of content) {
switch (part.type) {
case "text": {
parts.push({ text: part.text });
break;
}
case "file": {
const mediaType = part.mediaType === "image/*" ? "image/jpeg" : part.mediaType;
parts.push(
part.data instanceof URL ? {
fileData: {
mimeType: mediaType,
fileUri: part.data.toString()
}
} : {
inlineData: {
mimeType: mediaType,
data: (0, import_provider_utils3.convertToBase64)(part.data)
}
}
);
break;
}
}
}
contents.push({ role: "user", parts });
break;
}
case "assistant": {
systemMessagesAllowed = false;
contents.push({
role: "model",
parts: content.map((part) => {
switch (part.type) {
case "text": {
return part.text.length === 0 ? void 0 : { text: part.text };
}
case "file": {
if (part.mediaType !== "image/png") {
throw new import_provider2.UnsupportedFunctionalityError({
functionality: "Only PNG images are supported in assistant messages"
});
}
if (part.data instanceof URL) {
throw new import_provider2.UnsupportedFunctionalityError({
functionality: "File data URLs in assistant messages are not supported"
});
}
return {
inlineData: {
mimeType: part.mediaType,
data: (0, import_provider_utils3.convertToBase64)(part.data)
}
};
}
case "tool-call": {
return {
functionCall: {
name: part.toolName,
args: part.input
}
};
}
}
}).filter((part) => part !== void 0)
});
break;
}
case "tool": {
systemMessagesAllowed = false;
contents.push({
role: "user",
parts: content.map((part) => ({
functionResponse: {
name: part.toolName,
response: {
name: part.toolName,
content: part.output.value
}
}
}))
});
break;
}
}
}
if (isGemmaModel && systemInstructionParts.length > 0 && contents.length > 0 && contents[0].role === "user") {
const systemText = systemInstructionParts.map((part) => part.text).join("\n\n");
contents[0].parts.unshift({ text: systemText + "\n\n" });
}
return {
systemInstruction: systemInstructionParts.length > 0 && !isGemmaModel ? { parts: systemInstructionParts } : void 0,
contents
};
}
// src/get-model-path.ts
function getModelPath(modelId) {
return modelId.includes("/") ? modelId : `models/${modelId}`;
}
// src/google-generative-ai-options.ts
var import_v44 = require("zod/v4");
var googleGenerativeAIProviderOptions = import_v44.z.object({
responseModalities: import_v44.z.array(import_v44.z.enum(["TEXT", "IMAGE"])).optional(),
thinkingConfig: import_v44.z.object({
thinkingBudget: import_v44.z.number().optional(),
includeThoughts: import_v44.z.boolean().optional()
}).optional(),
/**
Optional.
The name of the cached content used as context to serve the prediction.
Format: cachedContents/{cachedContent}
*/
cachedContent: import_v44.z.string().optional(),
/**
* Optional. Enable structured output. Default is true.
*
* This is useful when the JSON Schema contains elements that are
* not supported by the OpenAPI schema version that
* Google Generative AI uses. You can use this to disable
* structured outputs if you need to.
*/
structuredOutputs: import_v44.z.boolean().optional(),
/**
Optional. A list of unique safety settings for blocking unsafe content.
*/
safetySettings: import_v44.z.array(
import_v44.z.object({
category: import_v44.z.enum([
"HARM_CATEGORY_UNSPECIFIED",
"HARM_CATEGORY_HATE_SPEECH",
"HARM_CATEGORY_DANGEROUS_CONTENT",
"HARM_CATEGORY_HARASSMENT",
"HARM_CATEGORY_SEXUALLY_EXPLICIT",
"HARM_CATEGORY_CIVIC_INTEGRITY"
]),
threshold: import_v44.z.enum([
"HARM_BLOCK_THRESHOLD_UNSPECIFIED",
"BLOCK_LOW_AND_ABOVE",
"BLOCK_MEDIUM_AND_ABOVE",
"BLOCK_ONLY_HIGH",
"BLOCK_NONE",
"OFF"
])
})
).optional(),
threshold: import_v44.z.enum([
"HARM_BLOCK_THRESHOLD_UNSPECIFIED",
"BLOCK_LOW_AND_ABOVE",
"BLOCK_MEDIUM_AND_ABOVE",
"BLOCK_ONLY_HIGH",
"BLOCK_NONE",
"OFF"
]).optional(),
/**
* Optional. Enables timestamp understanding for audio-only files.
*
* https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/audio-understanding
*/
audioTimestamp: import_v44.z.boolean().optional()
});
// src/google-prepare-tools.ts
var import_provider3 = require("@ai-sdk/provider");
function prepareTools({
tools,
toolChoice,
modelId
}) {
var _a;
tools = (tools == null ? void 0 : tools.length) ? tools : void 0;
const toolWarnings = [];
const isGemini2 = modelId.includes("gemini-2");
const supportsDynamicRetrieval = modelId.includes("gemini-1.5-flash") && !modelId.includes("-8b");
if (tools == null) {
return { tools: void 0, toolConfig: void 0, toolWarnings };
}
const hasFunctionTools = tools.some((tool) => tool.type === "function");
const hasProviderDefinedTools = tools.some(
(tool) => tool.type === "provider-defined"
);
if (hasFunctionTools && hasProviderDefinedTools) {
toolWarnings.push({
type: "unsupported-tool",
tool: tools.find((tool) => tool.type === "function"),
details: "Cannot mix function tools with provider-defined tools in the same request. Please use either function tools or provider-defined tools, but not both."
});
}
if (hasProviderDefinedTools) {
const googleTools2 = {};
const providerDefinedTools = tools.filter(
(tool) => tool.type === "provider-defined"
);
providerDefinedTools.forEach((tool) => {
switch (tool.id) {
case "google.google_search":
if (isGemini2) {
googleTools2.googleSearch = {};
} else if (supportsDynamicRetrieval) {
googleTools2.googleSearchRetrieval = {
dynamicRetrievalConfig: {
mode: tool.args.mode,
dynamicThreshold: tool.args.dynamicThreshold
}
};
} else {
googleTools2.googleSearchRetrieval = {};
}
break;
case "google.url_context":
if (isGemini2) {
googleTools2.urlContext = {};
} else {
toolWarnings.push({
type: "unsupported-tool",
tool,
details: "The URL context tool is not supported with other Gemini models than Gemini 2."
});
}
break;
case "google.code_execution":
if (isGemini2) {
googleTools2.codeExecution = {};
} else {
toolWarnings.push({
type: "unsupported-tool",
tool,
details: "The code execution tools is not supported with other Gemini models than Gemini 2."
});
}
break;
default:
toolWarnings.push({ type: "unsupported-tool", tool });
break;
}
});
return {
tools: Object.keys(googleTools2).length > 0 ? googleTools2 : void 0,
toolConfig: void 0,
toolWarnings
};
}
const functionDeclarations = [];
for (const tool of tools) {
switch (tool.type) {
case "function":
functionDeclarations.push({
name: tool.name,
description: (_a = tool.description) != null ? _a : "",
parameters: convertJSONSchemaToOpenAPISchema(tool.inputSchema)
});
break;
default:
toolWarnings.push({ type: "unsupported-tool", tool });
break;
}
}
if (toolChoice == null) {
return {
tools: { functionDeclarations },
toolConfig: void 0,
toolWarnings
};
}
const type = toolChoice.type;
switch (type) {
case "auto":
return {
tools: { functionDeclarations },
toolConfig: { functionCallingConfig: { mode: "AUTO" } },
toolWarnings
};
case "none":
return {
tools: { functionDeclarations },
toolConfig: { functionCallingConfig: { mode: "NONE" } },
toolWarnings
};
case "required":
return {
tools: { functionDeclarations },
toolConfig: { functionCallingConfig: { mode: "ANY" } },
toolWarnings
};
case "tool":
return {
tools: { functionDeclarations },
toolConfig: {
functionCallingConfig: {
mode: "ANY",
allowedFunctionNames: [toolChoice.toolName]
}
},
toolWarnings
};
default: {
const _exhaustiveCheck = type;
throw new import_provider3.UnsupportedFunctionalityError({
functionality: `tool choice type: ${_exhaustiveCheck}`
});
}
}
}
// src/map-google-generative-ai-finish-reason.ts
function mapGoogleGenerativeAIFinishReason({
finishReason,
hasToolCalls
}) {
switch (finishReason) {
case "STOP":
return hasToolCalls ? "tool-calls" : "stop";
case "MAX_TOKENS":
return "length";
case "IMAGE_SAFETY":
case "RECITATION":
case "SAFETY":
case "BLOCKLIST":
case "PROHIBITED_CONTENT":
case "SPII":
return "content-filter";
case "FINISH_REASON_UNSPECIFIED":
case "OTHER":
return "other";
case "MALFORMED_FUNCTION_CALL":
return "error";
default:
return "unknown";
}
}
// src/tool/google-search.ts
var import_provider_utils4 = require("@ai-sdk/provider-utils");
var import_v45 = require("zod/v4");
var groundingChunkSchema = import_v45.z.object({
web: import_v45.z.object({ uri: import_v45.z.string(), title: import_v45.z.string() }).nullish(),
retrievedContext: import_v45.z.object({ uri: import_v45.z.string(), title: import_v45.z.string() }).nullish()
});
var groundingMetadataSchema = import_v45.z.object({
webSearchQueries: import_v45.z.array(import_v45.z.string()).nullish(),
retrievalQueries: import_v45.z.array(import_v45.z.string()).nullish(),
searchEntryPoint: import_v45.z.object({ renderedContent: import_v45.z.string() }).nullish(),
groundingChunks: import_v45.z.array(groundingChunkSchema).nullish(),
groundingSupports: import_v45.z.array(
import_v45.z.object({
segment: import_v45.z.object({
startIndex: import_v45.z.number().nullish(),
endIndex: import_v45.z.number().nullish(),
text: import_v45.z.string().nullish()
}),
segment_text: import_v45.z.string().nullish(),
groundingChunkIndices: import_v45.z.array(import_v45.z.number()).nullish(),
supportChunkIndices: import_v45.z.array(import_v45.z.number()).nullish(),
confidenceScores: import_v45.z.array(import_v45.z.number()).nullish(),
confidenceScore: import_v45.z.array(import_v45.z.number()).nullish()
})
).nullish(),
retrievalMetadata: import_v45.z.union([
import_v45.z.object({
webDynamicRetrievalScore: import_v45.z.number()
}),
import_v45.z.object({})
]).nullish()
});
var googleSearch = (0, import_provider_utils4.createProviderDefinedToolFactory)({
id: "google.google_search",
name: "google_search",
inputSchema: import_v45.z.object({
mode: import_v45.z.enum(["MODE_DYNAMIC", "MODE_UNSPECIFIED"]).default("MODE_UNSPECIFIED"),
dynamicThreshold: import_v45.z.number().default(1)
})
});
// src/tool/url-context.ts
var import_provider_utils5 = require("@ai-sdk/provider-utils");
var import_v46 = require("zod/v4");
var urlMetadataSchema = import_v46.z.object({
retrievedUrl: import_v46.z.string(),
urlRetrievalStatus: import_v46.z.string()
});
var urlContextMetadataSchema = import_v46.z.object({
urlMetadata: import_v46.z.array(urlMetadataSchema)
});
var urlContext = (0, import_provider_utils5.createProviderDefinedToolFactory)({
id: "google.url_context",
name: "url_context",
inputSchema: import_v46.z.object({})
});
// src/google-generative-ai-language-model.ts
var GoogleGenerativeAILanguageModel = class {
constructor(modelId, config) {
this.specificationVersion = "v2";
var _a;
this.modelId = modelId;
this.config = config;
this.generateId = (_a = config.generateId) != null ? _a : import_provider_utils6.generateId;
}
get provider() {
return this.config.provider;
}
get supportedUrls() {
var _a, _b, _c;
return (_c = (_b = (_a = this.config).supportedUrls) == null ? void 0 : _b.call(_a)) != null ? _c : {};
}
async getArgs({
prompt,
maxOutputTokens,
temperature,
topP,
topK,
frequencyPenalty,
presencePenalty,
stopSequences,
responseFormat,
seed,
tools,
toolChoice,
providerOptions
}) {
var _a, _b;
const warnings = [];
const googleOptions = await (0, import_provider_utils6.parseProviderOptions)({
provider: "google",
providerOptions,
schema: googleGenerativeAIProviderOptions
});
if (((_a = googleOptions == null ? void 0 : googleOptions.thinkingConfig) == null ? void 0 : _a.includeThoughts) === true && !this.config.provider.startsWith("google.vertex.")) {
warnings.push({
type: "other",
message: `The 'includeThoughts' option is only supported with the Google Vertex provider and might not be supported or could behave unexpectedly with the current Google provider (${this.config.provider}).`
});
}
const isGemmaModel = this.modelId.toLowerCase().startsWith("gemma-");
const { contents, systemInstruction } = convertToGoogleGenerativeAIMessages(
prompt,
{ isGemmaModel }
);
const {
tools: googleTools2,
toolConfig: googleToolConfig,
toolWarnings
} = prepareTools({
tools,
toolChoice,
modelId: this.modelId
});
return {
args: {
generationConfig: {
// standardized settings:
maxOutputTokens,
temperature,
topK,
topP,
frequencyPenalty,
presencePenalty,
stopSequences,
seed,
// response format:
responseMimeType: (responseFormat == null ? void 0 : responseFormat.type) === "json" ? "application/json" : void 0,
responseSchema: (responseFormat == null ? void 0 : responseFormat.type) === "json" && responseFormat.schema != null && // Google GenAI does not support all OpenAPI Schema features,
// so this is needed as an escape hatch:
// TODO convert into provider option
((_b = googleOptions == null ? void 0 : googleOptions.structuredOutputs) != null ? _b : true) ? convertJSONSchemaToOpenAPISchema(responseFormat.schema) : void 0,
...(googleOptions == null ? void 0 : googleOptions.audioTimestamp) && {
audioTimestamp: googleOptions.audioTimestamp
},
// provider options:
responseModalities: googleOptions == null ? void 0 : googleOptions.responseModalities,
thinkingConfig: googleOptions == null ? void 0 : googleOptions.thinkingConfig
},
contents,
systemInstruction: isGemmaModel ? void 0 : systemInstruction,
safetySettings: googleOptions == null ? void 0 : googleOptions.safetySettings,
tools: googleTools2,
toolConfig: googleToolConfig,
cachedContent: googleOptions == null ? void 0 : googleOptions.cachedContent
},
warnings: [...warnings, ...toolWarnings]
};
}
async doGenerate(options) {
var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k, _l;
const { args, warnings } = await this.getArgs(options);
const body = JSON.stringify(args);
const mergedHeaders = (0, import_provider_utils6.combineHeaders)(
await (0, import_provider_utils6.resolve)(this.config.headers),
options.headers
);
const {
responseHeaders,
value: response,
rawValue: rawResponse
} = await (0, import_provider_utils6.postJsonToApi)({
url: `${this.config.baseURL}/${getModelPath(
this.modelId
)}:generateContent`,
headers: mergedHeaders,
body: args,
failedResponseHandler: googleFailedResponseHandler,
successfulResponseHandler: (0, import_provider_utils6.createJsonResponseHandler)(responseSchema),
abortSignal: options.abortSignal,
fetch: this.config.fetch
});
const candidate = response.candidates[0];
const content = [];
const parts = (_b = (_a = candidate.content) == null ? void 0 : _a.parts) != null ? _b : [];
const usageMetadata = response.usageMetadata;
let lastCodeExecutionToolCallId;
for (const part of parts) {
if ("executableCode" in part && ((_c = part.executableCode) == null ? void 0 : _c.code)) {
const toolCallId = this.config.generateId();
lastCodeExecutionToolCallId = toolCallId;
content.push({
type: "tool-call",
toolCallId,
toolName: "code_execution",
input: JSON.stringify(part.executableCode),
providerExecuted: true
});
} else if ("codeExecutionResult" in part && part.codeExecutionResult) {
content.push({
type: "tool-result",
// Assumes a result directly follows its corresponding call part.
toolCallId: lastCodeExecutionToolCallId,
toolName: "code_execution",
result: {
outcome: part.codeExecutionResult.outcome,
output: part.codeExecutionResult.output
},
providerExecuted: true
});
lastCodeExecutionToolCallId = void 0;
} else if ("text" in part && part.text != null && part.text.length > 0) {
if (part.thought === true) {
content.push({ type: "reasoning", text: part.text });
} else {
content.push({ type: "text", text: part.text });
}
} else if ("functionCall" in part) {
content.push({
type: "tool-call",
toolCallId: this.config.generateId(),
toolName: part.functionCall.name,
input: JSON.stringify(part.functionCall.args)
});
} else if ("inlineData" in part) {
content.push({
type: "file",
data: part.inlineData.data,
mediaType: part.inlineData.mimeType
});
}
}
const sources = (_d = extractSources({
groundingMetadata: candidate.groundingMetadata,
generateId: this.config.generateId
})) != null ? _d : [];
for (const source of sources) {
content.push(source);
}
return {
content,
finishReason: mapGoogleGenerativeAIFinishReason({
finishReason: candidate.finishReason,
hasToolCalls: content.some((part) => part.type === "tool-call")
}),
usage: {
inputTokens: (_e = usageMetadata == null ? void 0 : usageMetadata.promptTokenCount) != null ? _e : void 0,
outputTokens: (_f = usageMetadata == null ? void 0 : usageMetadata.candidatesTokenCount) != null ? _f : void 0,
totalTokens: (_g = usageMetadata == null ? void 0 : usageMetadata.totalTokenCount) != null ? _g : void 0,
reasoningTokens: (_h = usageMetadata == null ? void 0 : usageMetadata.thoughtsTokenCount) != null ? _h : void 0,
cachedInputTokens: (_i = usageMetadata == null ? void 0 : usageMetadata.cachedContentTokenCount) != null ? _i : void 0
},
warnings,
providerMetadata: {
google: {
groundingMetadata: (_j = candidate.groundingMetadata) != null ? _j : null,
urlContextMetadata: (_k = candidate.urlContextMetadata) != null ? _k : null,
safetyRatings: (_l = candidate.safetyRatings) != null ? _l : null,
usageMetadata: usageMetadata != null ? usageMetadata : null
}
},
request: { body },
response: {
// TODO timestamp, model id, id
headers: responseHeaders,
body: rawResponse
}
};
}
async doStream(options) {
const { args, warnings } = await this.getArgs(options);
const body = JSON.stringify(args);
const headers = (0, import_provider_utils6.combineHeaders)(
await (0, import_provider_utils6.resolve)(this.config.headers),
options.headers
);
const { responseHeaders, value: response } = await (0, import_provider_utils6.postJsonToApi)({
url: `${this.config.baseURL}/${getModelPath(
this.modelId
)}:streamGenerateContent?alt=sse`,
headers,
body: args,
failedResponseHandler: googleFailedResponseHandler,
successfulResponseHandler: (0, import_provider_utils6.createEventSourceResponseHandler)(chunkSchema),
abortSignal: options.abortSignal,
fetch: this.config.fetch
});
let finishReason = "unknown";
const usage = {
inputTokens: void 0,
outputTokens: void 0,
totalTokens: void 0
};
let providerMetadata = void 0;
const generateId3 = this.config.generateId;
let hasToolCalls = false;
let currentTextBlockId = null;
let currentReasoningBlockId = null;
let blockCounter = 0;
const emittedSourceUrls = /* @__PURE__ */ new Set();
let lastCodeExecutionToolCallId;
return {
stream: response.pipeThrough(
new TransformStream({
start(controller) {
controller.enqueue({ type: "stream-start", warnings });
},
transform(chunk, controller) {
var _a, _b, _c, _d, _e, _f, _g, _h, _i, _j, _k;
if (options.includeRawChunks) {
controller.enqueue({ type: "raw", rawValue: chunk.rawValue });
}
if (!chunk.success) {
controller.enqueue({ type: "error", error: chunk.error });
return;
}
const value = chunk.value;
const usageMetadata = value.usageMetadata;
if (usageMetadata != null) {
usage.inputTokens = (_a = usageMetadata.promptTokenCount) != null ? _a : void 0;
usage.outputTokens = (_b = usageMetadata.candidatesTokenCount) != null ? _b : void 0;
usage.totalTokens = (_c = usageMetadata.totalTokenCount) != null ? _c : void 0;
usage.reasoningTokens = (_d = usageMetadata.thoughtsTokenCount) != null ? _d : void 0;
usage.cachedInputTokens = (_e = usageMetadata.cachedContentTokenCount) != null ? _e : void 0;
}
const candidate = (_f = value.candidates) == null ? void 0 : _f[0];
if (candidate == null) {
return;
}
const content = candidate.content;
const sources = extractSources({
groundingMetadata: candidate.groundingMetadata,
generateId: generateId3
});
if (sources != null) {
for (const source of sources) {
if (source.sourceType === "url" && !emittedSourceUrls.has(source.url)) {
emittedSourceUrls.add(source.url);
controller.enqueue(source);
}
}
}
if (content != null) {
const parts = (_g = content.parts) != null ? _g : [];
for (const part of parts) {
if ("executableCode" in part && ((_h = part.executableCode) == null ? void 0 : _h.code)) {
const toolCallId = generateId3();
lastCodeExecutionToolCallId = toolCallId;
controller.enqueue({
type: "tool-call",
toolCallId,
toolName: "code_execution",
input: JSON.stringify(part.executableCode),
providerExecuted: true
});
hasToolCalls = true;
} else if ("codeExecutionResult" in part && part.codeExecutionResult) {
const toolCallId = lastCodeExecutionToolCallId;
if (toolCallId) {
controller.enqueue({
type: "tool-result",
toolCallId,
toolName: "code_execution",
result: {
outcome: part.codeExecutionResult.outcome,
output: part.codeExecutionResult.output
},
providerExecuted: true
});
lastCodeExecutionToolCallId = void 0;
}
} else if ("text" in part && part.text != null && part.text.length > 0) {
if (part.thought === true) {
if (currentTextBlockId !== null) {
controller.enqueue({
type: "text-end",
id: currentTextBlockId
});
currentTextBlockId = null;
}
if (currentReasoningBlockId === null) {
currentReasoningBlockId = String(blockCounter++);
controller.enqueue({
type: "reasoning-start",
id: currentReasoningBlockId
});
}
controller.enqueue({
type: "reasoning-delta",
id: currentReasoningBlockId,
delta: part.text
});
} else {
if (currentReasoningBlockId !== null) {
controller.enqueue({
type: "reasoning-end",
id: currentReasoningBlockId
});
currentReasoningBlockId = null;
}
if (currentTextBlockId === null) {
currentTextBlockId = String(blockCounter++);
controller.enqueue({
type: "text-start",
id: currentTextBlockId
});
}
controller.enqueue({
type: "text-delta",
id: currentTextBlockId,
delta: part.text
});
}
}
}
const inlineDataParts = getInlineDataParts(content.parts);
if (inlineDataParts != null) {
for (const part of inlineDataParts) {
controller.enqueue({
type: "file",
mediaType: part.inlineData.mimeType,
data: part.inlineData.data
});
}
}
const toolCallDeltas = getToolCallsFromParts({
parts: content.parts,
generateId: generateId3
});
if (toolCallDeltas != null) {
for (const toolCall of toolCallDeltas) {
controller.enqueue({
type: "tool-input-start",
id: toolCall.toolCallId,
toolName: toolCall.toolName
});
controller.enqueue({
type: "tool-input-delta",
id: toolCall.toolCallId,
delta: toolCall.args
});
controller.enqueue({
type: "tool-input-end",
id: toolCall.toolCallId
});
controller.enqueue({
type: "tool-call",
toolCallId: toolCall.toolCallId,
toolName: toolCall.toolName,
input: toolCall.args
});
hasToolCalls = true;
}
}
}
if (candidate.finishReason != null) {
finishReason = mapGoogleGenerativeAIFinishReason({
finishReason: candidate.finishReason,
hasToolCalls
});
providerMetadata = {
google: {
groundingMetadata: (_i = candidate.groundingMetadata) != null ? _i : null,
urlContextMetadata: (_j = candidate.urlContextMetadata) != null ? _j : null,
safetyRatings: (_k = candidate.safetyRatings) != null ? _k : null
}
};
if (usageMetadata != null) {
providerMetadata.google.usageMetadata = usageMetadata;
}
}
},
flush(controller) {
if (currentTextBlockId !== null) {
controller.enqueue({
type: "text-end",
id: currentTextBlockId
});
}
if (currentReasoningBlockId !== null) {
controller.enqueue({
type: "reasoning-end",
id: currentReasoningBlockId
});
}
controller.enqueue({
type: "finish",
finishReason,
usage,
providerMetadata
});
}
})
),
response: { headers: responseHeaders },
request: { body }
};
}
};
function getToolCallsFromParts({
parts,
generateId: generateId3
}) {
const functionCallParts = parts == null ? void 0 : parts.filter(
(part) => "functionCall" in part
);
return functionCallParts == null || functionCallParts.length === 0 ? void 0 : functionCallParts.map((part) => ({
type: "tool-call",
toolCallId: generateId3(),
toolName: part.functionCall.name,
args: JSON.stringify(part.functionCall.args)
}));
}
function getInlineDataParts(parts) {
return parts == null ? void 0 : parts.filter(
(part) => "inlineData" in part
);
}
function extractSources({
groundingMetadata,
generateId: generateId3
}) {
var _a;
return (_a = groundingMetadata == null ? void 0 : groundingMetadata.groundingChunks) == null ? void 0 : _a.filter(
(chunk) => chunk.web != null
).map((chunk) => ({
type: "source",
sourceType: "url",
id: generateId3(),
url: chunk.web.uri,
title: chunk.web.title
}));
}
var contentSchema = import_v47.z.object({
parts: import_v47.z.array(
import_v47.z.union([
// note: order matters since text can be fully empty
import_v47.z.object({
functionCall: import_v47.z.object({
name: import_v47.z.string(),
args: import_v47.z.unknown()
})
}),
import_v47.z.object({
inlineData: import_v47.z.object({
mimeType: import_v47.z.string(),
data: import_v47.z.string()
})
}),
import_v47.z.object({
executableCode: import_v47.z.object({
language: import_v47.z.string(),
code: import_v47.z.string()
}).nullish(),
codeExecutionResult: import_v47.z.object({
outcome: import_v47.z.string(),
output: import_v47.z.string()
}).nullish(),
text: import_v47.z.string().nullish(),
thought: import_v47.z.boolean().nullish()
})
])
).nullish()
});
var safetyRatingSchema = import_v47.z.object({
category: import_v47.z.string().nullish(),
probability: import_v47.z.string().nullish(),
probabilityScore: import_v47.z.number().nullish(),
severity: import_v47.z.string().nullish(),
severityScore: import_v47.z.number().nullish(),
blocked: import_v47.z.boolean().nullish()
});
var usageSchema = import_v47.z.object({
cachedContentTokenCount: import_v47.z.number().nullish(),
thoughtsTokenCount: import_v47.z.number().nullish(),
promptTokenCount: import_v47.z.number().nullish(),
candidatesTokenCount: import_v47.z.number().nullish(),
totalTokenCount: import_v47.z.number().nullish()
});
var responseSchema = import_v47.z.object({
candidates: import_v47.z.array(
import_v47.z.object({
content: contentSchema.nullish().or(import_v47.z.object({}).strict()),
finishReason: import_v47.z.string().nullish(),
safetyRatings: import_v47.z.array(safetyRatingSchema).nullish(),
groundingMetadata: groundingMetadataSchema.nullish(),
urlContextMetadata: urlContextMetadataSchema.nullish()
})
),
usageMetadata: usageSchema.nullish()
});
var chunkSchema = import_v47.z.object({
candidates: import_v47.z.array(
import_v47.z.object({
content: contentSchema.nullish(),
finishReason: import_v47.z.string().nullish(),
safetyRatings: import_v47.z.array(safetyRatingSchema).nullish(),
groundingMetadata: groundingMetadataSchema.nullish(),
urlContextMetadata: urlContextMetadataSchema.nullish()
})
).nullish(),
usageMetadata: usageSchema.nullish()
});
// src/tool/code-execution.ts
var import_provider_utils7 = require("@ai-sdk/provider-utils");
var import_v48 = require("zod/v4");
var codeExecution = (0, import_provider_utils7.createProviderDefinedToolFactoryWithOutputSchema)({
id: "google.code_execution",
name: "code_execution",
inputSchema: import_v48.z.object({
language: import_v48.z.string().describe("The programming language of the code."),
code: import_v48.z.string().describe("The code to be executed.")
}),
outputSchema: import_v48.z.object({
outcome: import_v48.z.string().describe('The outcome of the execution (e.g., "OUTCOME_OK").'),
output: import_v48.z.string().describe("The output from the code execution.")
})
});
// src/google-tools.ts
var googleTools = {
/**
* Creates a Google search tool that gives Google direct access to real-time web content.
* Must have name "google_search".
*/
googleSearch,
/**
* Creates a URL context tool that gives Google direct access to real-time web content.
* Must have name "url_context".
*/
urlContext,
/**
* A tool that enables the model to generate and run Python code.
* Must have name "code_execution".
*
* @note Ensure the selected model supports Code Execution.
* Multi-tool usage with the code execution tool is typically compatible with Gemini >=2 models.
*
* @see https://ai.google.dev/gemini-api/docs/code-execution (Google AI)
* @see https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/code-execution-api (Vertex AI)
*/
codeExecution
};
// src/google-generative-ai-image-model.ts
var import_provider_utils8 = require("@ai-sdk/provider-utils");
var import_v49 = require("zod/v4");
var GoogleGenerativeAIImageModel = class {
constructor(modelId, settings, config) {
this.modelId = modelId;
this.settings = settings;
this.config = config;
this.specificationVersion = "v2";
}
get maxImagesPerCall() {
var _a;
return (_a = this.settings.maxImagesPerCall) != null ? _a : 4;
}
get provider() {
return this.config.provider;
}
async doGenerate(options) {
var _a, _b, _c;
const {
prompt,
n = 1,
size = "1024x1024",
aspectRatio = "1:1",
seed,
providerOptions,
headers,
abortSignal
} = options;
const warnings = [];
if (size != null) {
warnings.push({
type: "unsupported-setting",
setting: "size",
details: "This model does not support the `size` option. Use `aspectRatio` instead."
});
}
if (seed != null) {
warnings.push({
type: "unsupported-setting",
setting: "seed",
details: "This model does not support the `seed` option through this provider."
});
}
const googleOptions = await (0, import_provider_utils8.parseProviderOptions)({
provider: "google",
providerOptions,
schema: googleImageProviderOptionsSchema
});
const currentDate = (_c = (_b = (_a = this.config._internal) == null ? void 0 : _a.currentDate) == null ? void 0 : _b.call(_a)) != null ? _c : /* @__PURE__ */ new Date();
const parameters = {
sampleCount: n
};
if (aspectRatio != null) {
parameters.aspectRatio = aspectRatio;
}
if (googleOptions) {
Object.assign(parameters, googleOptions);
}
const body = {
instances: [{ prompt }],
parameters
};
const { responseHeaders, value: response } = await (0, import_provider_utils8.postJsonToApi)({
url: `${this.config.baseURL}/models/${this.modelId}:predict`,
headers: (0, import_provider_utils8.combineHeaders)(await (0, import_provider_utils8.resolve)(this.config.headers), headers),
body,
failedResponseHandler: googleFailedResponseHandler,
successfulResponseHandler: (0, import_provider_utils8.createJsonResponseHandler)(
googleImageResponseSchema
),
abortSignal,
fetch: this.config.fetch
});
return {
images: response.predictions.map(
(p) => p.bytesBase64Encoded
),
warnings: warnings != null ? warnings : [],
providerMetadata: {
google: {
images: response.predictions.map((prediction) => ({
// Add any prediction-specific metadata here
}))
}
},
response: {
timestamp: currentDate,
modelId: this.modelId,
headers: responseHeaders
}
};
}
};
var googleImageResponseSchema = import_v49.z.object({
predictions: import_v49.z.array(import_v49.z.object({ bytesBase64Encoded: import_v49.z.string() })).default([])
});
var googleImageProviderOptionsSchema = import_v49.z.object({
personGeneration: import_v49.z.enum(["dont_allow", "allow_adult", "allow_all"]).nullish(),
aspectRatio: import_v49.z.enum(["1:1", "3:4", "4:3", "9:16", "16:9"]).nullish()
});
// src/google-provider.ts
function createGoogleGenerativeAI(options = {}) {
var _a;
const baseURL = (_a = (0, import_provider_utils9.withoutTrailingSlash)(options.baseURL)) != null ? _a : "https://generativelanguage.googleapis.com/v1beta";
const getHeaders = () => ({
"x-goog-api-key": (0, import_provider_utils9.loadApiKey)({
apiKey: options.apiKey,
environmentVariableName: "GOOGLE_GENERATIVE_AI_API_KEY",
description: "Google Generative AI"
}),
...options.headers
});
const createChatModel = (modelId) => {
var _a2;
return new GoogleGenerativeAILanguageModel(modelId, {
provider: "google.generative-ai",
baseURL,
headers: getHeaders,
generateId: (_a2 = options.generateId) != null ? _a2 : import_provider_utils9.generateId,
supportedUrls: () => ({
"*": [
// Google Generative Language "files" endpoint
// e.g. https://generativelanguage.googleapis.com/v1beta/files/...
new RegExp(`^${baseURL}/files/.*$`),
// YouTube URLs (public or unlisted videos)
new RegExp(
`^https://(?:www\\.)?youtube\\.com/watch\\?v=[\\w-]+(?:&[\\w=&.-]*)?$`
),