UNPKG

@ai-sdk/google-vertex

Version:

The **[Google Vertex provider](https://ai-sdk.dev/providers/ai-sdk-providers/google-vertex)** for the [AI SDK](https://ai-sdk.dev/docs) contains language model support for the [Google Vertex AI](https://cloud.google.com/vertex-ai) APIs.

370 lines (361 loc) 11.3 kB
// src/google-vertex-provider-node.ts import { resolve as resolve3 } from "@ai-sdk/provider-utils"; // src/google-vertex-auth-google-auth-library.ts import { GoogleAuth } from "google-auth-library"; var authInstance = null; var authOptions = null; function getAuth(options) { if (!authInstance || options !== authOptions) { authInstance = new GoogleAuth({ scopes: ["https://www.googleapis.com/auth/cloud-platform"], ...options }); authOptions = options; } return authInstance; } async function generateAuthToken(options) { const auth = getAuth(options || {}); const client = await auth.getClient(); const token = await client.getAccessToken(); return (token == null ? void 0 : token.token) || null; } // src/google-vertex-provider.ts import { GoogleGenerativeAILanguageModel } from "@ai-sdk/google/internal"; import { generateId, loadSetting, withoutTrailingSlash } from "@ai-sdk/provider-utils"; // src/google-vertex-embedding-model.ts import { TooManyEmbeddingValuesForCallError } from "@ai-sdk/provider"; import { combineHeaders, createJsonResponseHandler, postJsonToApi, resolve, parseProviderOptions } from "@ai-sdk/provider-utils"; import { z as z3 } from "zod/v4"; // src/google-vertex-error.ts import { createJsonErrorResponseHandler } from "@ai-sdk/provider-utils"; import { z } from "zod/v4"; var googleVertexErrorDataSchema = z.object({ error: z.object({ code: z.number().nullable(), message: z.string(), status: z.string() }) }); var googleVertexFailedResponseHandler = createJsonErrorResponseHandler( { errorSchema: googleVertexErrorDataSchema, errorToMessage: (data) => data.error.message } ); // src/google-vertex-embedding-options.ts import { z as z2 } from "zod/v4"; var googleVertexEmbeddingProviderOptions = z2.object({ /** * Optional. Optional reduced dimension for the output embedding. * If set, excessive values in the output embedding are truncated from the end. */ outputDimensionality: z2.number().optional(), /** * Optional. Specifies the task type for generating embeddings. * Supported task types: * - SEMANTIC_SIMILARITY: Optimized for text similarity. * - CLASSIFICATION: Optimized for text classification. * - CLUSTERING: Optimized for clustering texts based on similarity. * - RETRIEVAL_DOCUMENT: Optimized for document retrieval. * - RETRIEVAL_QUERY: Optimized for query-based retrieval. * - QUESTION_ANSWERING: Optimized for answering questions. * - FACT_VERIFICATION: Optimized for verifying factual information. * - CODE_RETRIEVAL_QUERY: Optimized for retrieving code blocks based on natural language queries. */ taskType: z2.enum([ "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING", "RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "QUESTION_ANSWERING", "FACT_VERIFICATION", "CODE_RETRIEVAL_QUERY" ]).optional() }); // src/google-vertex-embedding-model.ts var GoogleVertexEmbeddingModel = class { constructor(modelId, config) { this.specificationVersion = "v2"; this.maxEmbeddingsPerCall = 2048; this.supportsParallelCalls = true; this.modelId = modelId; this.config = config; } get provider() { return this.config.provider; } async doEmbed({ values, headers, abortSignal, providerOptions }) { var _a; const googleOptions = (_a = await parseProviderOptions({ provider: "google", providerOptions, schema: googleVertexEmbeddingProviderOptions })) != null ? _a : {}; if (values.length > this.maxEmbeddingsPerCall) { throw new TooManyEmbeddingValuesForCallError({ provider: this.provider, modelId: this.modelId, maxEmbeddingsPerCall: this.maxEmbeddingsPerCall, values }); } const mergedHeaders = combineHeaders( await resolve(this.config.headers), headers ); const url = `${this.config.baseURL}/models/${this.modelId}:predict`; const { responseHeaders, value: response, rawValue } = await postJsonToApi({ url, headers: mergedHeaders, body: { instances: values.map((value) => ({ content: value })), parameters: { outputDimensionality: googleOptions.outputDimensionality, taskType: googleOptions.taskType } }, failedResponseHandler: googleVertexFailedResponseHandler, successfulResponseHandler: createJsonResponseHandler( googleVertexTextEmbeddingResponseSchema ), abortSignal, fetch: this.config.fetch }); return { embeddings: response.predictions.map( (prediction) => prediction.embeddings.values ), usage: { tokens: response.predictions.reduce( (tokenCount, prediction) => tokenCount + prediction.embeddings.statistics.token_count, 0 ) }, response: { headers: responseHeaders, body: rawValue } }; } }; var googleVertexTextEmbeddingResponseSchema = z3.object({ predictions: z3.array( z3.object({ embeddings: z3.object({ values: z3.array(z3.number()), statistics: z3.object({ token_count: z3.number() }) }) }) ) }); // src/google-vertex-image-model.ts import { combineHeaders as combineHeaders2, createJsonResponseHandler as createJsonResponseHandler2, parseProviderOptions as parseProviderOptions2, postJsonToApi as postJsonToApi2, resolve as resolve2 } from "@ai-sdk/provider-utils"; import { z as z4 } from "zod/v4"; var GoogleVertexImageModel = class { constructor(modelId, config) { this.modelId = modelId; this.config = config; this.specificationVersion = "v2"; // https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/imagen-api#parameter_list this.maxImagesPerCall = 4; } get provider() { return this.config.provider; } async doGenerate({ prompt, n, size, aspectRatio, seed, providerOptions, headers, abortSignal }) { var _a, _b, _c, _d, _e, _f, _g; const warnings = []; if (size != null) { warnings.push({ type: "unsupported-setting", setting: "size", details: "This model does not support the `size` option. Use `aspectRatio` instead." }); } const vertexImageOptions = await parseProviderOptions2({ provider: "vertex", providerOptions, schema: vertexImageProviderOptionsSchema }); const body = { instances: [{ prompt }], parameters: { sampleCount: n, ...aspectRatio != null ? { aspectRatio } : {}, ...seed != null ? { seed } : {}, ...vertexImageOptions != null ? vertexImageOptions : {} } }; const currentDate = (_c = (_b = (_a = this.config._internal) == null ? void 0 : _a.currentDate) == null ? void 0 : _b.call(_a)) != null ? _c : /* @__PURE__ */ new Date(); const { value: response, responseHeaders } = await postJsonToApi2({ url: `${this.config.baseURL}/models/${this.modelId}:predict`, headers: combineHeaders2(await resolve2(this.config.headers), headers), body, failedResponseHandler: googleVertexFailedResponseHandler, successfulResponseHandler: createJsonResponseHandler2( vertexImageResponseSchema ), abortSignal, fetch: this.config.fetch }); return { images: (_e = (_d = response.predictions) == null ? void 0 : _d.map( ({ bytesBase64Encoded }) => bytesBase64Encoded )) != null ? _e : [], warnings, response: { timestamp: currentDate, modelId: this.modelId, headers: responseHeaders }, providerMetadata: { vertex: { images: (_g = (_f = response.predictions) == null ? void 0 : _f.map((prediction) => { const { // normalize revised prompt property prompt: revisedPrompt } = prediction; return { ...revisedPrompt != null && { revisedPrompt } }; })) != null ? _g : [] } } }; } }; var vertexImageResponseSchema = z4.object({ predictions: z4.array( z4.object({ bytesBase64Encoded: z4.string(), mimeType: z4.string(), prompt: z4.string().nullish() }) ).nullish() }); var vertexImageProviderOptionsSchema = z4.object({ negativePrompt: z4.string().nullish(), personGeneration: z4.enum(["dont_allow", "allow_adult", "allow_all"]).nullish(), safetySetting: z4.enum([ "block_low_and_above", "block_medium_and_above", "block_only_high", "block_none" ]).nullish(), addWatermark: z4.boolean().nullish(), storageUri: z4.string().nullish() }); // src/google-vertex-provider.ts function createVertex(options = {}) { const loadVertexProject = () => loadSetting({ settingValue: options.project, settingName: "project", environmentVariableName: "GOOGLE_VERTEX_PROJECT", description: "Google Vertex project" }); const loadVertexLocation = () => loadSetting({ settingValue: options.location, settingName: "location", environmentVariableName: "GOOGLE_VERTEX_LOCATION", description: "Google Vertex location" }); const loadBaseURL = () => { var _a; const region = loadVertexLocation(); const project = loadVertexProject(); const baseHost = `${region === "global" ? "" : region + "-"}aiplatform.googleapis.com`; return (_a = withoutTrailingSlash(options.baseURL)) != null ? _a : `https://${baseHost}/v1/projects/${project}/locations/${region}/publishers/google`; }; const createConfig = (name) => { var _a; return { provider: `google.vertex.${name}`, headers: (_a = options.headers) != null ? _a : {}, fetch: options.fetch, baseURL: loadBaseURL() }; }; const createChatModel = (modelId) => { var _a; return new GoogleGenerativeAILanguageModel(modelId, { ...createConfig("chat"), generateId: (_a = options.generateId) != null ? _a : generateId, supportedUrls: () => ({ "*": [ // HTTP URLs: /^https?:\/\/.*$/, // Google Cloud Storage URLs: /^gs:\/\/.*$/ ] }) }); }; const createEmbeddingModel = (modelId) => new GoogleVertexEmbeddingModel(modelId, createConfig("embedding")); const createImageModel = (modelId) => new GoogleVertexImageModel(modelId, createConfig("image")); const provider = function(modelId) { if (new.target) { throw new Error( "The Google Vertex AI model function cannot be called with the new keyword." ); } return createChatModel(modelId); }; provider.languageModel = createChatModel; provider.textEmbeddingModel = createEmbeddingModel; provider.image = createImageModel; provider.imageModel = createImageModel; return provider; } // src/google-vertex-provider-node.ts function createVertex2(options = {}) { return createVertex({ ...options, headers: async () => ({ Authorization: `Bearer ${await generateAuthToken( options.googleAuthOptions )}`, ...await resolve3(options.headers) }) }); } var vertex = createVertex2(); export { createVertex2 as createVertex, vertex }; //# sourceMappingURL=index.mjs.map