UNPKG

@ai-sdk/deepinfra

Version:

The **[DeepInfra provider](https://ai-sdk.dev/providers/ai-sdk-providers/deepinfra)** for the [AI SDK](https://ai-sdk.dev/docs) contains language model support for the DeepInfra API, giving you access to models like Llama 3, Mixtral, and other state-of-th

139 lines (137 loc) 4.13 kB
// src/deepinfra-provider.ts import { OpenAICompatibleChatLanguageModel, OpenAICompatibleCompletionLanguageModel, OpenAICompatibleEmbeddingModel } from "@ai-sdk/openai-compatible"; import { loadApiKey, withoutTrailingSlash } from "@ai-sdk/provider-utils"; // src/deepinfra-image-model.ts import { combineHeaders, createJsonErrorResponseHandler, createJsonResponseHandler, postJsonToApi } from "@ai-sdk/provider-utils"; import { z } from "zod/v4"; var DeepInfraImageModel = class { constructor(modelId, config) { this.modelId = modelId; this.config = config; this.specificationVersion = "v2"; this.maxImagesPerCall = 1; } get provider() { return this.config.provider; } async doGenerate({ prompt, n, size, aspectRatio, seed, providerOptions, headers, abortSignal }) { var _a, _b, _c, _d; const warnings = []; const splitSize = size == null ? void 0 : size.split("x"); const currentDate = (_c = (_b = (_a = this.config._internal) == null ? void 0 : _a.currentDate) == null ? void 0 : _b.call(_a)) != null ? _c : /* @__PURE__ */ new Date(); const { value: response, responseHeaders } = await postJsonToApi({ url: `${this.config.baseURL}/${this.modelId}`, headers: combineHeaders(this.config.headers(), headers), body: { prompt, num_images: n, ...aspectRatio && { aspect_ratio: aspectRatio }, ...splitSize && { width: splitSize[0], height: splitSize[1] }, ...seed != null && { seed }, ...(_d = providerOptions.deepinfra) != null ? _d : {} }, failedResponseHandler: createJsonErrorResponseHandler({ errorSchema: deepInfraErrorSchema, errorToMessage: (error) => error.detail.error }), successfulResponseHandler: createJsonResponseHandler( deepInfraImageResponseSchema ), abortSignal, fetch: this.config.fetch }); return { images: response.images.map( (image) => image.replace(/^data:image\/\w+;base64,/, "") ), warnings, response: { timestamp: currentDate, modelId: this.modelId, headers: responseHeaders } }; } }; var deepInfraErrorSchema = z.object({ detail: z.object({ error: z.string() }) }); var deepInfraImageResponseSchema = z.object({ images: z.array(z.string()) }); // src/deepinfra-provider.ts function createDeepInfra(options = {}) { var _a; const baseURL = withoutTrailingSlash( (_a = options.baseURL) != null ? _a : "https://api.deepinfra.com/v1" ); const getHeaders = () => ({ Authorization: `Bearer ${loadApiKey({ apiKey: options.apiKey, environmentVariableName: "DEEPINFRA_API_KEY", description: "DeepInfra's API key" })}`, ...options.headers }); const getCommonModelConfig = (modelType) => ({ provider: `deepinfra.${modelType}`, url: ({ path }) => `${baseURL}/openai${path}`, headers: getHeaders, fetch: options.fetch }); const createChatModel = (modelId) => { return new OpenAICompatibleChatLanguageModel( modelId, getCommonModelConfig("chat") ); }; const createCompletionModel = (modelId) => new OpenAICompatibleCompletionLanguageModel( modelId, getCommonModelConfig("completion") ); const createTextEmbeddingModel = (modelId) => new OpenAICompatibleEmbeddingModel( modelId, getCommonModelConfig("embedding") ); const createImageModel = (modelId) => new DeepInfraImageModel(modelId, { ...getCommonModelConfig("image"), baseURL: baseURL ? `${baseURL}/inference` : "https://api.deepinfra.com/v1/inference" }); const provider = (modelId) => createChatModel(modelId); provider.completionModel = createCompletionModel; provider.chatModel = createChatModel; provider.image = createImageModel; provider.imageModel = createImageModel; provider.languageModel = createChatModel; provider.textEmbeddingModel = createTextEmbeddingModel; return provider; } var deepinfra = createDeepInfra(); export { createDeepInfra, deepinfra }; //# sourceMappingURL=index.mjs.map