UNPKG

@agentica/core

Version:

Agentic AI Library specialized in LLM Function Calling

83 lines 4.42 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.getChatCompletionWithStreamingFunction = getChatCompletionWithStreamingFunction; const uuid_1 = require("uuid"); const AgenticaTokenUsageAggregator_1 = require("../context/internal/AgenticaTokenUsageAggregator"); const factory_1 = require("../factory"); const ChatGptCompletionMessageUtil_1 = require("./ChatGptCompletionMessageUtil"); const StreamUtil_1 = require("./StreamUtil"); function getChatCompletionWithStreamingFunction(props) { return (source, body) => __awaiter(this, void 0, void 0, function* () { var _a, _b; const event = (0, factory_1.createRequestEvent)({ source, body: Object.assign(Object.assign({}, body), { model: props.vendor.model, stream: true, stream_options: { include_usage: true, } }), options: Object.assign(Object.assign({}, props.vendor.options), { signal: props.abortSignal }), }); yield props.dispatch(event); // completion const backoffStrategy = (_b = (_a = props.config) === null || _a === void 0 ? void 0 : _a.backoffStrategy) !== null && _b !== void 0 ? _b : ((props) => { throw props.error; }); const completion = yield (() => __awaiter(this, void 0, void 0, function* () { let count = 0; while (true) { try { return yield props.vendor.api.chat.completions.create(event.body, event.options); } catch (error) { const waiting = backoffStrategy({ count, error }); yield new Promise(resolve => setTimeout(resolve, waiting)); count++; } } }))(); const [streamForEvent, temporaryStream] = StreamUtil_1.StreamUtil.transform(completion.toReadableStream(), value => ChatGptCompletionMessageUtil_1.ChatGptCompletionMessageUtil.transformCompletionChunk(value), props.abortSignal).tee(); const [streamForAggregate, streamForReturn] = temporaryStream.tee(); (() => __awaiter(this, void 0, void 0, function* () { var _a; const reader = streamForAggregate.getReader(); while (true) { const chunk = yield reader.read(); if (chunk.done || ((_a = props.abortSignal) === null || _a === void 0 ? void 0 : _a.aborted) === true) { break; } if (chunk.value.usage != null) { AgenticaTokenUsageAggregator_1.AgenticaTokenUsageAggregator.aggregate({ kind: source, completionUsage: chunk.value.usage, usage: props.usage, }); } } }))().catch(() => { }); const [streamForStream, streamForJoin] = streamForEvent.tee(); void props.dispatch({ id: (0, uuid_1.v4)(), type: "response", request_id: event.id, source, stream: (0, StreamUtil_1.streamDefaultReaderToAsyncGenerator)(streamForStream.getReader(), props.abortSignal), body: event.body, options: event.options, join: () => __awaiter(this, void 0, void 0, function* () { const chunks = yield StreamUtil_1.StreamUtil.readAll(streamForJoin, props.abortSignal); return ChatGptCompletionMessageUtil_1.ChatGptCompletionMessageUtil.merge(chunks); }), created_at: new Date().toISOString(), }).catch(() => { }); return streamForReturn; }); } //# sourceMappingURL=request.js.map