UNPKG

@agentica/core

Version:

Agentic AI Library specialized in LLM Function Calling

86 lines 5.03 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.reduceStreamingWithDispatch = reduceStreamingWithDispatch; const _1 = require("."); function reduceStreamingWithDispatch(stream, eventProcessor, abortSignal) { return __awaiter(this, void 0, void 0, function* () { const streamContext = new Map(); const nullableCompletion = yield _1.StreamUtil.reduce(stream, (accPromise, chunk) => __awaiter(this, void 0, void 0, function* () { const acc = yield accPromise; const registerContext = (choices) => { for (const choice of choices) { // Handle content first, even if finish_reason is present if (choice.delta.content != null && choice.delta.content !== "") { // Process content logic (moved up from below) if (streamContext.has(choice.index)) { const context = streamContext.get(choice.index); context.content += choice.delta.content; context.mpsc.produce(choice.delta.content); } else { const mpsc = new _1.MPSC(); streamContext.set(choice.index, { content: choice.delta.content, mpsc, }); mpsc.produce(choice.delta.content); eventProcessor({ stream: (0, _1.streamDefaultReaderToAsyncGenerator)(mpsc.consumer.getReader()), done: () => mpsc.done(), get: () => { var _a, _b; return (_b = (_a = streamContext.get(choice.index)) === null || _a === void 0 ? void 0 : _a.content) !== null && _b !== void 0 ? _b : ""; }, join: () => __awaiter(this, void 0, void 0, function* () { yield mpsc.waitClosed(); return streamContext.get(choice.index).content; }), }); } } // Handle finish_reason after content processing if (choice.finish_reason != null) { const context = streamContext.get(choice.index); if (context != null) { context.mpsc.close(); } } } }; if (acc.object === "chat.completion.chunk") { registerContext([acc, chunk].flatMap(v => v.choices)); return _1.ChatGptCompletionMessageUtil.merge([acc, chunk]); } registerContext(chunk.choices); return _1.ChatGptCompletionMessageUtil.accumulate(acc, chunk); }), { abortSignal }); if (nullableCompletion == null) { throw new Error("StreamUtil.reduce did not produce a ChatCompletion. Possible causes: the input stream was empty, invalid, or closed prematurely. " + "To debug: check that the stream is properly initialized and contains valid ChatCompletionChunk data. " + "You may also enable verbose logging upstream to inspect the stream contents. " + `Stream locked: ${stream.locked}.`); } if (nullableCompletion.object === "chat.completion.chunk") { const completion = _1.ChatGptCompletionMessageUtil.merge([nullableCompletion]); completion.choices.forEach((choice) => { if (choice.message.content != null && choice.message.content !== "") { eventProcessor({ stream: (0, _1.toAsyncGenerator)(choice.message.content), done: () => true, get: () => choice.message.content, join: () => __awaiter(this, void 0, void 0, function* () { return choice.message.content; }), }); } }); return completion; } return nullableCompletion; }); } //# sourceMappingURL=ChatGptCompletionStreamingUtil.js.map