@acuris/eslint-config
Version:
Acuris eslint shareable configuration
1,081 lines (911 loc) • 25.1 kB
JavaScript
/**
* Default minimum size of a run.
*/
const DEFAULT_MIN_MERGE = 32
/**
* Minimum ordered subsequece required to do galloping.
*/
const DEFAULT_MIN_GALLOPING = 7
/**
* Default tmp storage length. Can increase depending on the size of the
* smallest run to merge.
*/
const DEFAULT_TMP_STORAGE_LENGTH = 256
/**
* Pre-computed powers of 10 for efficient lexicographic comparison of
* small integers.
*/
const POWERS_OF_TEN = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9]
let results
/**
* Estimate the logarithm base 10 of a small integer.
*
* @param {number} x - The integer to estimate the logarithm of.
* @return {number} - The estimated logarithm of the integer.
*/
const log10 = x => x < 1e5
? x < 1e2
? x < 1e1
? 0
: 1
: x < 1e4
? x < 1e3
? 2
: 3
: 4
: x < 1e7
? x < 1e6
? 5
: 6
: x < 1e9
? x < 1e8
? 7
: 8
: 9
/**
* Default alphabetical comparison of items.
*
* @param {string|object|number} a - First element to compare.
* @param {string|object|number} b - Second element to compare.
* @return {number} - A positive number if a.toString() > b.toString(), a
* negative number if .toString() < b.toString(), 0 otherwise.
*/
function alphabeticalCompare (a, b) {
if (a === b) {
return 0
}
if (~ ~ a === a && ~ ~ b === b) {
if (a === 0 || b === 0) {
return a < b ? - 1 : 1
}
if (a < 0 || b < 0) {
if (b >= 0) {
return - 1
}
if (a >= 0) {
return 1
}
a = - a
b = - b
}
const al = log10(a)
const bl = log10(b)
let t = 0
if (al < bl) {
a *= POWERS_OF_TEN[bl - al - 1]
b /= 10
t = - 1
} else if (al > bl) {
b *= POWERS_OF_TEN[al - bl - 1]
a /= 10
t = 1
}
if (a === b) {
return t
}
return a < b ? - 1 : 1
}
const aStr = String(a)
const bStr = String(b)
if (aStr === bStr) {
return 0
}
return aStr < bStr ? - 1 : 1
}
/**
* Compute minimum run length for TimSort
*
* @param {number} n - The size of the array to sort.
*/
function minRunLength (n) {
let r = 0
while (n >= DEFAULT_MIN_MERGE) {
r |= (n & 1)
n >>= 1
}
return n + r
}
/**
* Counts the length of a monotonically ascending or strictly monotonically
* descending sequence (run) starting at array[lo] in the range [lo, hi). If
* the run is descending it is made ascending.
*
* @param {array} array - The array to reverse.
* @param {number} lo - First element in the range (inclusive).
* @param {number} hi - Last element in the range.
* @param {function} compare - Item comparison function.
* @return {number} - The length of the run.
*/
function makeAscendingRun (array, lo, hi, compare) {
let runHi = lo + 1
if (runHi === hi) {
return 1
}
// Descending
if (compare(array[runHi ++], array[lo]) < 0) {
while (runHi < hi && compare(array[runHi], array[runHi - 1]) < 0) {
runHi ++
}
reverseRun(array, lo, runHi)
reverseRun(results, lo, runHi)
// Ascending
} else {
while (runHi < hi && compare(array[runHi], array[runHi - 1]) >= 0) {
runHi ++
}
}
return runHi - lo
}
/**
* Reverse an array in the range [lo, hi).
*
* @param {array} array - The array to reverse.
* @param {number} lo - First element in the range (inclusive).
* @param {number} hi - Last element in the range.
*/
function reverseRun (array, lo, hi) {
hi --
while (lo < hi) {
const t = array[lo]
array[lo ++] = array[hi]
array[hi --] = t
}
}
/**
* Perform the binary sort of the array in the range [lo, hi) where start is
* the first element possibly out of order.
*
* @param {array} array - The array to sort.
* @param {number} lo - First element in the range (inclusive).
* @param {number} hi - Last element in the range.
* @param {number} start - First element possibly out of order.
* @param {function} compare - Item comparison function.
*/
function binaryInsertionSort (array, lo, hi, start, compare) {
if (start === lo) {
start ++
}
for (; start < hi; start ++) {
const pivot = array[start]
const pivotIndex = results[start]
// Ranges of the array where pivot belongs
let left = lo
let right = start
/*
* pivot >= array[i] for i in [lo, left)
* pivot < array[i] for i in in [right, start)
*/
while (left < right) {
const mid = (left + right) >>> 1
if (compare(pivot, array[mid]) < 0) {
right = mid
} else {
left = mid + 1
}
}
/*
* Move elements right to make room for the pivot. If there are elements
* equal to pivot, left points to the first slot after them: this is also
* a reason for which TimSort is stable
*/
let n = start - left
// Switch is just an optimization for small arrays
switch (n) {
case 3:
array[left + 3] = array[left + 2]
results[left + 3] = results[left + 2]
/* falls through */
case 2:
array[left + 2] = array[left + 1]
results[left + 2] = results[left + 1]
/* falls through */
case 1:
array[left + 1] = array[left]
results[left + 1] = results[left]
break
default:
while (n > 0) {
array[left + n] = array[left + n - 1]
results[left + n] = results[left + n - 1]
n --
}
}
array[left] = pivot
results[left] = pivotIndex
}
}
/**
* Find the position at which to insert a value in a sorted range. If the range
* contains elements equal to the value the leftmost element index is returned
* (for stability).
*
* @param {number} value - Value to insert.
* @param {array} array - The array in which to insert value.
* @param {number} start - First element in the range.
* @param {number} length - Length of the range.
* @param {number} hint - The index at which to begin the search.
* @param {function} compare - Item comparison function.
* @return {number} - The index where to insert value.
*/
function gallopLeft (value, array, start, length, hint, compare) {
let lastOffset = 0
let maxOffset = 0
let offset = 1
if (compare(value, array[start + hint]) > 0) {
maxOffset = length - hint
while (
offset < maxOffset
&& compare(value, array[start + hint + offset]) > 0
) {
lastOffset = offset
offset = (offset << 1) + 1
if (offset <= 0) {
offset = maxOffset
}
}
if (offset > maxOffset) {
offset = maxOffset
}
// Make offsets relative to start
lastOffset += hint
offset += hint
// value <= array[start + hint]
} else {
maxOffset = hint + 1
while (
offset < maxOffset
&& compare(value, array[start + hint - offset]) <= 0
) {
lastOffset = offset
offset = (offset << 1) + 1
if (offset <= 0) {
offset = maxOffset
}
}
if (offset > maxOffset) {
offset = maxOffset
}
// Make offsets relative to start
const tmp = lastOffset
lastOffset = hint - offset
offset = hint - tmp
}
/*
* Now array[start+lastOffset] < value <= array[start+offset], so value
* belongs somewhere in the range (start + lastOffset, start + offset]. Do a
* binary search, with invariant array[start + lastOffset - 1] < value <=
* array[start + offset].
*/
lastOffset ++
while (lastOffset < offset) {
const m = lastOffset + ((offset - lastOffset) >>> 1)
if (compare(value, array[start + m]) > 0) {
lastOffset = m + 1
} else {
offset = m
}
}
return offset
}
/**
* Find the position at which to insert a value in a sorted range. If the range
* contains elements equal to the value the rightmost element index is returned
* (for stability).
*
* @param {number} value - Value to insert.
* @param {array} array - The array in which to insert value.
* @param {number} start - First element in the range.
* @param {number} length - Length of the range.
* @param {number} hint - The index at which to begin the search.
* @param {function} compare - Item comparison function.
* @return {number} - The index where to insert value.
*/
function gallopRight (value, array, start, length, hint, compare) {
let lastOffset = 0
let maxOffset = 0
let offset = 1
if (compare(value, array[start + hint]) < 0) {
maxOffset = hint + 1
while (
offset < maxOffset
&& compare(value, array[start + hint - offset]) < 0
) {
lastOffset = offset
offset = (offset << 1) + 1
if (offset <= 0) {
offset = maxOffset
}
}
if (offset > maxOffset) {
offset = maxOffset
}
// Make offsets relative to start
const tmp = lastOffset
lastOffset = hint - offset
offset = hint - tmp
// value >= array[start + hint]
} else {
maxOffset = length - hint
while (
offset < maxOffset
&& compare(value, array[start + hint + offset]) >= 0
) {
lastOffset = offset
offset = (offset << 1) + 1
if (offset <= 0) {
offset = maxOffset
}
}
if (offset > maxOffset) {
offset = maxOffset
}
// Make offsets relative to start
lastOffset += hint
offset += hint
}
/*
* Now array[start+lastOffset] < value <= array[start+offset], so value
* belongs somewhere in the range (start + lastOffset, start + offset]. Do a
* binary search, with invariant array[start + lastOffset - 1] < value <=
* array[start + offset].
*/
lastOffset ++
while (lastOffset < offset) {
const m = lastOffset + ((offset - lastOffset) >>> 1)
if (compare(value, array[start + m]) < 0) {
offset = m
} else {
lastOffset = m + 1
}
}
return offset
}
class TimSort {
constructor (array, compare) {
this.array = array
this.compare = compare
const {length} = array
this.length = length
this.minGallop = DEFAULT_MIN_GALLOPING
this.tmpStorageLength = length < 2 * DEFAULT_TMP_STORAGE_LENGTH
? length >>> 1
: DEFAULT_TMP_STORAGE_LENGTH
this.tmp = new Array(this.tmpStorageLength)
this.tmpIndex = new Array(this.tmpStorageLength)
this.stackLength = length < 120
? 5
: length < 1542
? 10
: length < 119151
? 19
: 40
this.runStart = new Array(this.stackLength)
this.runLength = new Array(this.stackLength)
this.stackSize = 0
}
/**
* Push a new run on TimSort's stack.
*
* @param {number} runStart - Start index of the run in the original array.
* @param {number} runLength - Length of the run;
*/
pushRun (runStart, runLength) {
this.runStart[this.stackSize] = runStart
this.runLength[this.stackSize] = runLength
this.stackSize += 1
}
/**
* Merge runs on TimSort's stack so that the following holds for all i:
* 1) runLength[i - 3] > runLength[i - 2] + runLength[i - 1]
* 2) runLength[i - 2] > runLength[i - 1]
*/
mergeRuns () {
while (this.stackSize > 1) {
let n = this.stackSize - 2
if (
(
n >= 1
&& this.runLength[n - 1] <= this.runLength[n] + this.runLength[n + 1]
)
|| (
n >= 2
&& this.runLength[n - 2] <= this.runLength[n] + this.runLength[n - 1]
)
) {
if (this.runLength[n - 1] < this.runLength[n + 1]) {
n --
}
} else if (this.runLength[n] > this.runLength[n + 1]) {
break
}
this.mergeAt(n)
}
}
/**
* Merge all runs on TimSort's stack until only one remains.
*/
forceMergeRuns () {
while (this.stackSize > 1) {
let n = this.stackSize - 2
if (n > 0 && this.runLength[n - 1] < this.runLength[n + 1]) {
n --
}
this.mergeAt(n)
}
}
/**
* Merge the runs on the stack at positions i and i+1. Must be always be called
* with i=stackSize-2 or i=stackSize-3 (that is, we merge on top of the stack).
*
* @param {number} i - Index of the run to merge in TimSort's stack.
*/
mergeAt (i) {
const {compare} = this
const {array} = this
let start1 = this.runStart[i]
let length1 = this.runLength[i]
const start2 = this.runStart[i + 1]
let length2 = this.runLength[i + 1]
this.runLength[i] = length1 + length2
if (i === this.stackSize - 3) {
this.runStart[i + 1] = this.runStart[i + 2]
this.runLength[i + 1] = this.runLength[i + 2]
}
this.stackSize --
/*
* Find where the first element in the second run goes in run1. Previous
* elements in run1 are already in place
*/
const k = gallopRight(array[start2], array, start1, length1, 0, compare)
start1 += k
length1 -= k
if (length1 === 0) {
return
}
/*
* Find where the last element in the first run goes in run2. Next elements
* in run2 are already in place
*/
length2 = gallopLeft(
array[start1 + length1 - 1],
array,
start2,
length2,
length2 - 1,
compare
)
if (length2 === 0) {
return
}
/*
* Merge remaining runs. A tmp array with length = min(length1, length2) is
* used
*/
if (length1 <= length2) {
this.mergeLow(start1, length1, start2, length2)
} else {
this.mergeHigh(start1, length1, start2, length2)
}
}
/**
* Merge two adjacent runs in a stable way. The runs must be such that the
* first element of run1 is bigger than the first element in run2 and the
* last element of run1 is greater than all the elements in run2.
* The method should be called when run1.length <= run2.length as it uses
* TimSort temporary array to store run1. Use mergeHigh if run1.length >
* run2.length.
*
* @param {number} start1 - First element in run1.
* @param {number} length1 - Length of run1.
* @param {number} start2 - First element in run2.
* @param {number} length2 - Length of run2.
*/
mergeLow (start1, length1, start2, length2) {
const {compare} = this
const {array} = this
const {tmp} = this
const {tmpIndex} = this
let i = 0
for (i = 0; i < length1; i ++) {
tmp[i] = array[start1 + i]
tmpIndex[i] = results[start1 + i]
}
let cursor1 = 0
let cursor2 = start2
let dest = start1
array[dest] = array[cursor2]
results[dest] = results[cursor2]
dest ++
cursor2 ++
if (-- length2 === 0) {
for (i = 0; i < length1; i ++) {
array[dest + i] = tmp[cursor1 + i]
results[dest + i] = tmpIndex[cursor1 + i]
}
return
}
if (length1 === 1) {
for (i = 0; i < length2; i ++) {
array[dest + i] = array[cursor2 + i]
results[dest + i] = results[cursor2 + i]
}
array[dest + length2] = tmp[cursor1]
results[dest + length2] = tmpIndex[cursor1]
return
}
let {minGallop} = this
while (true) {
let count1 = 0
let count2 = 0
let exit = false
do {
if (compare(array[cursor2], tmp[cursor1]) < 0) {
array[dest] = array[cursor2]
results[dest] = results[cursor2]
dest ++
cursor2 ++
count2 ++
count1 = 0
if (-- length2 === 0) {
exit = true
break
}
} else {
array[dest] = tmp[cursor1]
results[dest] = tmpIndex[cursor1]
dest ++
cursor1 ++
count1 ++
count2 = 0
if (-- length1 === 1) {
exit = true
break
}
}
} while ((count1 | count2) < minGallop)
if (exit) {
break
}
do {
count1 = gallopRight(array[cursor2], tmp, cursor1, length1, 0, compare)
if (count1 !== 0) {
for (i = 0; i < count1; i ++) {
array[dest + i] = tmp[cursor1 + i]
results[dest + i] = tmpIndex[cursor1 + i]
}
dest += count1
cursor1 += count1
length1 -= count1
if (length1 <= 1) {
exit = true
break
}
}
array[dest] = array[cursor2]
results[dest] = results[cursor2]
dest ++
cursor2 ++
if (-- length2 === 0) {
exit = true
break
}
count2 = gallopLeft(tmp[cursor1], array, cursor2, length2, 0, compare)
if (count2 !== 0) {
for (i = 0; i < count2; i ++) {
array[dest + i] = array[cursor2 + i]
results[dest + i] = results[cursor2 + i]
}
dest += count2
cursor2 += count2
length2 -= count2
if (length2 === 0) {
exit = true
break
}
}
array[dest] = tmp[cursor1]
results[dest] = tmpIndex[cursor1]
dest ++
cursor1 ++
if (-- length1 === 1) {
exit = true
break
}
minGallop --
} while (
count1 >= DEFAULT_MIN_GALLOPING
|| count2 >= DEFAULT_MIN_GALLOPING
)
if (exit) {
break
}
if (minGallop < 0) {
minGallop = 0
}
minGallop += 2
}
this.minGallop = minGallop
if (minGallop < 1) {
this.minGallop = 1
}
if (length1 === 1) {
for (i = 0; i < length2; i ++) {
array[dest + i] = array[cursor2 + i]
results[dest + i] = results[cursor2 + i]
}
array[dest + length2] = tmp[cursor1]
results[dest + length2] = tmpIndex[cursor1]
} else if (length1 === 0) {
throw new Error('mergeLow preconditions were not respected')
} else {
for (i = 0; i < length1; i ++) {
array[dest + i] = tmp[cursor1 + i]
results[dest + i] = tmpIndex[cursor1 + i]
}
}
}
/**
* Merge two adjacent runs in a stable way. The runs must be such that the
* first element of run1 is bigger than the first element in run2 and the
* last element of run1 is greater than all the elements in run2.
* The method should be called when run1.length > run2.length as it uses
* TimSort temporary array to store run2. Use mergeLow if run1.length <=
* run2.length.
*
* @param {number} start1 - First element in run1.
* @param {number} length1 - Length of run1.
* @param {number} start2 - First element in run2.
* @param {number} length2 - Length of run2.
*/
mergeHigh (start1, length1, start2, length2) {
const {compare} = this
const {array} = this
const {tmp} = this
const {tmpIndex} = this
let i = 0
for (i = 0; i < length2; i ++) {
tmp[i] = array[start2 + i]
tmpIndex[i] = results[start2 + i]
}
let cursor1 = start1 + length1 - 1
let cursor2 = length2 - 1
let dest = start2 + length2 - 1
let customCursor = 0
let customDest = 0
array[dest] = array[cursor1]
results[dest] = results[cursor1]
dest --
cursor1 --
if (-- length1 === 0) {
customCursor = dest - (length2 - 1)
for (i = 0; i < length2; i ++) {
array[customCursor + i] = tmp[i]
results[customCursor + i] = tmpIndex[i]
}
return
}
if (length2 === 1) {
dest -= length1
cursor1 -= length1
customDest = dest + 1
customCursor = cursor1 + 1
for (i = length1 - 1; i >= 0; i --) {
array[customDest + i] = array[customCursor + i]
results[customDest + i] = results[customCursor + i]
}
array[dest] = tmp[cursor2]
results[dest] = tmpIndex[cursor2]
return
}
let {minGallop} = this
while (true) {
let count1 = 0
let count2 = 0
let exit = false
do {
if (compare(tmp[cursor2], array[cursor1]) < 0) {
array[dest] = array[cursor1]
results[dest] = results[cursor1]
dest --
cursor1 --
count1 ++
count2 = 0
if (-- length1 === 0) {
exit = true
break
}
} else {
array[dest] = tmp[cursor2]
results[dest] = tmpIndex[cursor2]
dest --
cursor2 --
count2 ++
count1 = 0
if (-- length2 === 1) {
exit = true
break
}
}
} while ((count1 | count2) < minGallop)
if (exit) {
break
}
do {
count1 = length1 - gallopRight(
tmp[cursor2],
array,
start1,
length1,
length1 - 1,
compare
)
if (count1 !== 0) {
dest -= count1
cursor1 -= count1
length1 -= count1
customDest = dest + 1
customCursor = cursor1 + 1
for (i = count1 - 1; i >= 0; i --) {
array[customDest + i] = array[customCursor + i]
results[customDest + i] = results[customCursor + i]
}
if (length1 === 0) {
exit = true
break
}
}
array[dest] = tmp[cursor2]
results[dest] = tmpIndex[cursor2]
dest --
cursor2 --
if (-- length2 === 1) {
exit = true
break
}
count2 = length2 - gallopLeft(
array[cursor1],
tmp,
0,
length2,
length2 - 1,
compare
)
if (count2 !== 0) {
dest -= count2
cursor2 -= count2
length2 -= count2
customDest = dest + 1
customCursor = cursor2 + 1
for (i = 0; i < count2; i ++) {
array[customDest + i] = tmp[customCursor + i]
results[customDest + i] = tmpIndex[customCursor + i]
}
if (length2 <= 1) {
exit = true
break
}
}
array[dest] = array[cursor1]
results[dest] = results[cursor1]
dest --
cursor1 --
if (-- length1 === 0) {
exit = true
break
}
minGallop --
} while (
count1 >= DEFAULT_MIN_GALLOPING
|| count2 >= DEFAULT_MIN_GALLOPING
)
if (exit) {
break
}
if (minGallop < 0) {
minGallop = 0
}
minGallop += 2
}
this.minGallop = minGallop
if (minGallop < 1) {
this.minGallop = 1
}
if (length2 === 1) {
dest -= length1
cursor1 -= length1
customDest = dest + 1
customCursor = cursor1 + 1
for (i = length1 - 1; i >= 0; i --) {
array[customDest + i] = array[customCursor + i]
results[customDest + i] = results[customCursor + i]
}
array[dest] = tmp[cursor2]
results[dest] = tmpIndex[cursor2]
} else if (length2 === 0) {
throw new Error('mergeHigh preconditions were not respected')
} else {
customCursor = dest - (length2 - 1)
for (i = 0; i < length2; i ++) {
array[customCursor + i] = tmp[i]
results[customCursor + i] = tmpIndex[i]
}
}
}
}
/**
* Sort an array in the range [lo, hi) using TimSort.
*
* @param {array} array - The array to sort.
* @param {function=} compare - Item comparison function. Default is
* alphabetical
* @param {number} lo - First element in the range (inclusive).
* @param {number} hi - Last element in the range.
* comparator.
*/
function sort (array, compare, lo, hi) {
if (!Array.isArray(array)) {
throw new TypeError(
`The "array" argument must be an array. Received ${array}`
)
}
results = []
const {length} = array
let i = 0
while (i < length) {
results[i] = i ++
}
/*
* Handle the case where a comparison function is not provided. We do
* lexicographic sorting
*/
if (!compare) {
compare = alphabeticalCompare
} else if (typeof compare !== 'function') {
hi = lo
lo = compare
compare = alphabeticalCompare
}
if (!lo) {
lo = 0
}
if (!hi) {
hi = length
}
let remaining = hi - lo
// The array is already sorted
if (remaining < 2) {
return results
}
let runLength = 0
// On small arrays binary sort can be used directly
if (remaining < DEFAULT_MIN_MERGE) {
runLength = makeAscendingRun(array, lo, hi, compare)
binaryInsertionSort(array, lo, hi, lo + runLength, compare)
return results
}
const ts = new TimSort(array, compare)
const minRun = minRunLength(remaining)
do {
runLength = makeAscendingRun(array, lo, hi, compare)
if (runLength < minRun) {
let force = remaining
if (force > minRun) {
force = minRun
}
binaryInsertionSort(array, lo, lo + force, lo + runLength, compare)
runLength = force
}
// Push new run and merge if necessary
ts.pushRun(lo, runLength)
ts.mergeRuns()
// Go find next run
remaining -= runLength
lo += runLength
} while (remaining !== 0)
// Force merging of remaining runs
ts.forceMergeRuns()
return results
}
module.exports = {
sort
}