@access-mcp/compute-resources
Version:
MCP server for ACCESS-CI Compute Resources API
103 lines (77 loc) • 2.82 kB
Markdown
# Compute Resources MCP Server
MCP server for ACCESS-CI compute resources including hardware specifications, capabilities, and configurations.
## Usage Examples
### Discovery & Search
```
"List all GPU resources"
"Resources at NCSA"
"Cloud computing systems"
"Delta hardware specifications"
```
### Recommendations
```
"Recommend a resource for machine learning with GPUs"
"What system should I use for molecular dynamics?"
"Best resource for a beginner doing genomics analysis"
```
## Tools
### `search_resources`
Search and filter ACCESS-CI compute resources. Returns resource IDs usable by other ACCESS-CI services.
**Parameters:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `id` | string | Get specific resource (e.g., "delta.ncsa.access-ci.org") |
| `query` | string | Search names, descriptions, organizations |
| `type` | enum | Filter: `compute`, `storage`, `cloud`, `gpu`, `cpu` |
| `has_gpu` | boolean | Filter for GPU resources |
| `organization` | string | Filter by org: `NCSA`, `PSC`, `Purdue`, `SDSC`, `TACC` |
| `limit` | number | Max results (default: 50) |
**Examples:**
```javascript
// List all resources
search_resources({})
// Get specific resource
search_resources({ id: "expanse.sdsc.access-ci.org" })
// Find GPU resources at NCSA
search_resources({ has_gpu: true, organization: "NCSA" })
```
### `get_resource_hardware`
Get detailed hardware specs (CPU, GPU, memory, storage) for a resource.
**Parameters:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `id` | string | Resource ID (required) |
**Example:**
```javascript
get_resource_hardware({ id: "delta.ncsa.access-ci.org" })
```
## Prompts
### `recommend_compute_resource`
Get personalized resource recommendations based on research needs.
**Arguments:**
| Argument | Required | Description |
|----------|----------|-------------|
| `research_area` | Yes | Field of research (e.g., "machine learning", "molecular dynamics") |
| `compute_needs` | Yes | Requirements (e.g., "GPU for training transformers", "high memory for genome assembly") |
| `experience_level` | No | HPC experience: `beginner`, `intermediate`, `advanced` |
| `allocation_size` | No | Scale needed (e.g., "small pilot project", "large-scale production") |
## Installation
```bash
npm install -g @access-mcp/compute-resources
```
## Configuration
```json
{
"mcpServers": {
"access-compute-resources": {
"command": "npx",
"args": ["@access-mcp/compute-resources"]
}
}
}
```
## Resources
- `accessci://compute-resources` - All compute resources
- `accessci://compute-resources/capabilities-matrix` - Resource comparison matrix
- `accessci://compute-resources/gpu-guide` - GPU selection guide
- `accessci://compute-resources/resource-types` - Resource type taxonomy