UNPKG

@access-mcp/compute-resources

Version:

MCP server for ACCESS-CI Compute Resources API

103 lines (77 loc) 2.82 kB
# Compute Resources MCP Server MCP server for ACCESS-CI compute resources including hardware specifications, capabilities, and configurations. ## Usage Examples ### Discovery & Search ``` "List all GPU resources" "Resources at NCSA" "Cloud computing systems" "Delta hardware specifications" ``` ### Recommendations ``` "Recommend a resource for machine learning with GPUs" "What system should I use for molecular dynamics?" "Best resource for a beginner doing genomics analysis" ``` ## Tools ### `search_resources` Search and filter ACCESS-CI compute resources. Returns resource IDs usable by other ACCESS-CI services. **Parameters:** | Parameter | Type | Description | |-----------|------|-------------| | `id` | string | Get specific resource (e.g., "delta.ncsa.access-ci.org") | | `query` | string | Search names, descriptions, organizations | | `type` | enum | Filter: `compute`, `storage`, `cloud`, `gpu`, `cpu` | | `has_gpu` | boolean | Filter for GPU resources | | `organization` | string | Filter by org: `NCSA`, `PSC`, `Purdue`, `SDSC`, `TACC` | | `limit` | number | Max results (default: 50) | **Examples:** ```javascript // List all resources search_resources({}) // Get specific resource search_resources({ id: "expanse.sdsc.access-ci.org" }) // Find GPU resources at NCSA search_resources({ has_gpu: true, organization: "NCSA" }) ``` ### `get_resource_hardware` Get detailed hardware specs (CPU, GPU, memory, storage) for a resource. **Parameters:** | Parameter | Type | Description | |-----------|------|-------------| | `id` | string | Resource ID (required) | **Example:** ```javascript get_resource_hardware({ id: "delta.ncsa.access-ci.org" }) ``` ## Prompts ### `recommend_compute_resource` Get personalized resource recommendations based on research needs. **Arguments:** | Argument | Required | Description | |----------|----------|-------------| | `research_area` | Yes | Field of research (e.g., "machine learning", "molecular dynamics") | | `compute_needs` | Yes | Requirements (e.g., "GPU for training transformers", "high memory for genome assembly") | | `experience_level` | No | HPC experience: `beginner`, `intermediate`, `advanced` | | `allocation_size` | No | Scale needed (e.g., "small pilot project", "large-scale production") | ## Installation ```bash npm install -g @access-mcp/compute-resources ``` ## Configuration ```json { "mcpServers": { "access-compute-resources": { "command": "npx", "args": ["@access-mcp/compute-resources"] } } } ``` ## Resources - `accessci://compute-resources` - All compute resources - `accessci://compute-resources/capabilities-matrix` - Resource comparison matrix - `accessci://compute-resources/gpu-guide` - GPU selection guide - `accessci://compute-resources/resource-types` - Resource type taxonomy