UNPKG

@2bad/micrograd

Version:

[![NPM version](https://img.shields.io/npm/v/@2bad/micrograd)](https://www.npmjs.com/package/@2bad/micrograd) [![License](https://img.shields.io/npm/l/@2bad/micrograd)](https://opensource.org/license/MIT) [![GitHub Build Status](https://img.shields.io/git

92 lines (64 loc) 3.12 kB
# MicroGrad [![NPM version](https://img.shields.io/npm/v/@2bad/micrograd)](https://www.npmjs.com/package/@2bad/micrograd) [![License](https://img.shields.io/npm/l/@2bad/micrograd)](https://opensource.org/license/MIT) [![GitHub Build Status](https://img.shields.io/github/actions/workflow/status/2BAD/micrograd/build.yml)](https://github.com/2BAD/micrograd/actions/workflows/build.yml) [![Code coverage](https://img.shields.io/codecov/c/github/2BAD/micrograd)](https://codecov.io/gh/2BAD/micrograd) [![Written in TypeScript](https://img.shields.io/github/languages/top/2BAD/micrograd)](https://www.typescriptlang.org/) A TypeScript implementation of an autograd engine for educational purposes. ## Overview MicroGrad implements backpropagation (reverse-mode autodiff) over a dynamically built Directed Acyclic Graph (DAG). This project demonstrates how to implement automatic differentiation principles in TypeScript. ## Key Components - **Value Class**: Core autodiff functionality with gradient computation - **Neural Network Primitives**: Simple Neuron, Layer, and MLP implementations - **Graph Visualization**: Tools to visualize computation graphs ## Key improvements over the Python version - **API Design**: Both instance and static methods for operations compared to instance-only methods - **Higher Order Gradients**: Support for computing higher-order derivatives - **Extended Math**: Additional operations including log, exp, tanh, and sigmoid - **Gradient Tools**: Methods for gradient health checks and gradient clipping - **Performance**: Iterative stack-based topological sort for better efficiency ## Usage Example ```typescript import { Value } from '@2bad/micrograd'; // Create computation graph const a = new Value(-4.0, 'a') const b = new Value(2.0, 'b') let c = Value.add(a, b, 'c') // a + b let d = Value.add(Value.mul(a, b), Value.pow(b, 3), 'd') // a * b + b**3 // c += c + 1 c = Value.add(c, Value.add(c, new Value(1.0))) // c += 1 + c + (-a) c = Value.add(c, Value.add(Value.add(new Value(1.0), c), Value.negate(a))) // d += d * 2 + (b + a).relu() const bPlusA = Value.add(b, a) d = Value.add(d, Value.add(Value.mul(d, 2), Value.relu(bPlusA))) // d += 3 * d + (b - a).relu() const bMinusA = Value.sub(b, a) d = Value.add(d, Value.add(Value.mul(3, d), Value.relu(bMinusA))) // e = c - d const e = Value.sub(c, d, 'e') // f = e**2 const f = Value.pow(e, 2, 'f') // g = f / 2.0 let g = Value.div(f, 2.0, 'g') // g += 10.0 / f g = Value.add(g, Value.div(10.0, f)) // Forward pass console.log(g.data); // Value of the computation // Backward pass (compute gradients) g.backward(); // Access gradients console.log(a.grad); // dg/da console.log(b.grad); // dg/db ``` ## Building and Testing ```bash # Install dependencies npm install # Build the project npm run build # Run tests npm test ``` ## Acknowledgements This project is inspired by [micrograd](https://github.com/karpathy/micrograd) by Andrej Karpathy. The TypeScript implementation extends the core concepts with additional features and type safety.