3gpp-mcp-server
Version:
MCP Server for querying 3GPP telecom protocol specifications
444 lines (354 loc) • 12.6 kB
Markdown
# Technical Approach & Architecture
## Overview
This document outlines the technical approach, architecture decisions, and implementation strategy for the 3GPP MCP Server. Our approach combines semantic search, domain-specific knowledge modeling, and the Model Context Protocol to create an intelligent interface for 3GPP telecommunications specifications.
## Architecture Overview
### High-Level System Architecture
```mermaid
graph TB
subgraph "Client Layer"
A[Claude Desktop] --> B[Other MCP Clients]
B --> C[Custom Applications]
end
subgraph "MCP Protocol Layer"
D[MCP Server Interface]
D1[Tools Handler] --> D
D2[Resources Handler] --> D
D3[Prompts Handler] --> D
end
subgraph "Intelligence Layer"
E[Specification Manager]
F[Search Engine]
G[Document Processor]
H[RAG Engine]
end
subgraph "Data Layer"
I[TSpec-LLM Dataset]
J[Vector Database]
K[Metadata Cache]
L[Configuration Store]
end
A --> D
D1 --> E
D1 --> F
D2 --> E
D3 --> G
E --> I
F --> J
G --> I
H --> J
E --> K
F --> K
```
## Core Components
### 1. MCP Server Interface (`src/index.ts`)
**Responsibility**: Implements the Model Context Protocol specification
**Key Features**:
- **Tools Handlers**: Process semantic search, specification lookup, protocol queries
- **Resources Handlers**: Provide access to catalogs, timelines, protocol lists
- **Prompts Handlers**: Generate structured prompts for complex queries
- **Error Handling**: Robust error management and user feedback
**Implementation Details**:
```typescript
class GPPMCPServer {
- server: MCP Server instance
- specManager: Manages specification metadata
- searchEngine: Handles intelligent search
- documentProcessor: Processes specification content
}
```
### 2. Specification Manager (`src/utils/specification-manager.ts`)
**Responsibility**: Manages the 3GPP specification collection and metadata
**Core Capabilities**:
- **Specification Loading**: Discovers and loads specifications from TSpec-LLM dataset
- **Metadata Extraction**: Extracts titles, series, releases, keywords from documents
- **Catalog Management**: Maintains searchable catalog of all specifications
- **Protocol Mapping**: Maps protocols to their defining specifications
**Data Structures**:
```typescript
interface GPPSpecification {
id: string // e.g., "TS 24.301"
title: string // Human-readable title
series: string // Specification series (24, 25, 36, 38, etc.)
release: string // 3GPP release (Rel-15, Rel-16, etc.)
version: string // Specification version
filePath: string // Path to source document
format: 'markdown' | 'docx'
size: number // File size in bytes
lastModified: Date
metadata?: GPPSpecMetadata
}
```
### 3. Search Engine (`src/utils/search-engine.ts`)
**Responsibility**: Provides intelligent search across 3GPP specifications
**Search Algorithms**:
- **Semantic Search**: Content-based relevance scoring
- **Metadata Filtering**: Filter by series, release, keywords
- **Cross-Reference Resolution**: Find related specifications
- **Contextual Ranking**: Domain-aware result ranking
**Search Process**:
1. **Query Analysis**: Parse natural language query
2. **Filtering**: Apply series/release constraints
3. **Semantic Matching**: Score documents against query
4. **Result Ranking**: Sort by relevance and domain context
5. **Context Generation**: Extract relevant snippets
### 4. Document Processor (`src/utils/document-processor.ts`)
**Responsibility**: Extracts and processes content from specification documents
**Processing Pipeline**:
- **Content Extraction**: Parse markdown and DOCX formats
- **Metadata Parsing**: Extract technical metadata from documents
- **Section Analysis**: Identify document structure and key sections
- **Keyword Extraction**: Identify 3GPP-specific terminology
- **Summary Generation**: Create structured summaries
**Supported Formats**:
- **Markdown (.md)**: Primary format from TSpec-LLM dataset
- **DOCX (.docx)**: Microsoft Word format support (via mammoth.js)
- **Future**: PDF support for legacy specifications
## Data Architecture
### TSpec-LLM Dataset Integration
**Dataset Characteristics**:
- **Size**: 13.5 GB, 30,137 documents, 535M words
- **Coverage**: 3GPP Releases 8-19 (1999-2023)
- **Format**: Processed markdown with preserved structure
- **Quality**: Full content preservation including tables, formulas
**File Organization**:
```
TSpec-LLM/
├── Rel-8/
│ ├── series-21/
│ ├── series-22/
│ └── ...
├── Rel-9/
├── ...
└── Rel-19/
```
**Loading Strategy**:
1. **Lazy Loading**: Load specifications on-demand
2. **Metadata Caching**: Cache frequently accessed metadata
3. **Incremental Indexing**: Build search index progressively
4. **Memory Management**: Efficient handling of large dataset
### Data Model Design
**Specification Metadata Model**:
```typescript
interface GPPSpecMetadata {
workingGroup?: string // Responsible working group
technicalArea?: string // Technical domain
keywords?: string[] // 3GPP-specific terms
abstract?: string // Document abstract
stage?: 1 | 2 | 3 // 3GPP development stage
dependencies?: string[] // Referenced specifications
}
```
**Protocol Model**:
```typescript
interface GPPProtocol {
name: string // Short name (NAS, RRC)
fullName: string // Full protocol name
series: string // Primary specification series
specifications: string[] // Defining specifications
procedures?: ProtocolProcedure[]
}
```
## Search & Retrieval Strategy
### Multi-Level Search Architecture
**Level 1: Metadata Search**
- Fast filtering by series, release, specification ID
- Keyword matching in titles and abstracts
- Protocol and procedure name matching
**Level 2: Content Search**
- Full-text search within document content
- Section-aware search (scope, procedures, definitions)
- Technical term recognition and expansion
**Level 3: Semantic Search** (Future Enhancement)
- Vector embeddings for semantic similarity
- Cross-document concept matching
- Contextual relevance scoring
### Relevance Scoring Algorithm
**Multi-Factor Scoring**:
```typescript
relevanceScore = (
0.4 * titleMatch + // Title keyword matches
0.3 * keywordMatch + // Metadata keyword matches
0.2 * abstractMatch + // Abstract content matches
0.3 * specIdMatch + // Direct specification references
0.2 * contextBoost // Domain context boost
)
```
**Domain Context Factors**:
- Protocol relationships (NAS ↔ Authentication)
- Release evolution (Rel-15 → Rel-16 changes)
- Technical dependencies (RRC → PDCP → RLC)
## Query Processing Pipeline
### Natural Language Query Processing
**Pipeline Stages**:
1. **Query Parsing**: Extract key terms and intent
2. **Domain Mapping**: Map terms to 3GPP concepts
3. **Query Expansion**: Add related terms and synonyms
4. **Filter Application**: Apply series/release constraints
5. **Search Execution**: Execute multi-level search
6. **Result Synthesis**: Combine and rank results
7. **Response Generation**: Format for user consumption
**Example Query Flow**:
```
Input: "How does 5G NAS authentication work?"
1. Parse: ["5G", "NAS", "authentication", "work"]
2. Map: 5G → Rel-15+, NAS → series-24, authentication → security procedures
3. Expand: [authentication, security, SUCI, SUPI, AUSF, UDM]
4. Filter: series=24, release≥Rel-15
5. Search: Find TS 24.501, related security specs
6. Synthesize: Combine procedure information
7. Generate: Structured response with steps and references
```
### Response Generation Strategy
**Structured Response Format**:
```typescript
interface QueryResponse {
summary: string // Brief answer overview
details: string[] // Detailed explanations
procedures?: string[] // Step-by-step procedures
specifications: string[] // Referenced specifications
relatedTopics: string[] // Suggested related queries
messageFlows?: MessageFlow[] // Protocol message flows
}
```
## Performance Considerations
### Optimization Strategies
**Memory Management**:
- Lazy loading of specification content
- LRU cache for frequently accessed documents
- Memory-mapped file access for large documents
**Query Performance**:
- Metadata index for fast filtering
- Bloom filters for existence checks
- Result caching with TTL expiration
**Scalability Design**:
- Horizontal scaling support for search operations
- Stateless server design for multiple instances
- Database connection pooling
### Performance Targets
**Response Time Goals**:
- Simple queries (spec lookup): < 500ms
- Complex searches: < 3 seconds
- Cross-specification analysis: < 5 seconds
**Throughput Goals**:
- 100+ concurrent queries
- 1000+ specifications loaded
- Memory usage < 2GB per instance
## Integration Architecture
### MCP Protocol Implementation
**Tool Interface**:
```typescript
interface MCPTool {
name: string
description: string
inputSchema: JSONSchema
handler: (params: any) => Promise<MCPResponse>
}
```
**Resource Interface**:
```typescript
interface MCPResource {
uri: string
name: string
description: string
mimeType: string
generator: () => Promise<string>
}
```
**Prompt Interface**:
```typescript
interface MCPPrompt {
name: string
description: string
arguments: PromptArgument[]
generator: (args: any) => Promise<PromptMessage[]>
}
```
### Client Integration Patterns
**Claude Desktop Integration**:
```json
{
"mcpServers": {
"3gpp-server": {
"command": "node",
"args": ["dist/index.js"],
"cwd": "/path/to/3gpp-mcp-server"
}
}
}
```
**Custom Client Integration**:
```typescript
const client = new Client({
name: "3gpp-client",
version: "1.0.0"
}, {
capabilities: {}
});
await client.connect(transport);
const tools = await client.listTools();
```
## Technology Stack
### Core Technologies
**Runtime Environment**:
- **Node.js 18+**: JavaScript runtime
- **TypeScript**: Type safety and developer experience
- **ES2022**: Modern JavaScript features
**MCP Implementation**:
- **@modelcontextprotocol/sdk**: Official MCP SDK
- **Zod**: Schema validation and type inference
**Document Processing**:
- **fs-extra**: Enhanced file system operations
- **mammoth.js**: DOCX to text conversion (future)
- **markdown-it**: Markdown parsing (future enhancement)
**Future Enhancements**:
- **ChromaDB**: Vector database for semantic search
- **OpenAI Embeddings**: Semantic similarity computation
- **Redis**: Caching and session management
### Development Tools
**Build & Development**:
- **TypeScript Compiler**: Source transformation
- **ESLint**: Code quality and consistency
- **Jest**: Unit testing framework
- **ts-node**: Development runtime
**Documentation**:
- **Markdown**: Documentation format
- **Mermaid**: Diagram generation
- **TypeDoc**: API documentation generation
## Security & Privacy
### Security Considerations
**Data Protection**:
- Read-only access to specification documents
- No modification of source data
- Secure file path handling
**Network Security**:
- STDIO transport (no network exposure by default)
- Optional HTTPS transport for remote access
- Input validation and sanitization
**Access Control**:
- MCP client authentication (when applicable)
- Rate limiting for query operations
- Resource usage monitoring
### Privacy Considerations
**Data Handling**:
- No user query logging by default
- Anonymized usage statistics only
- No personally identifiable information storage
**Compliance**:
- 3GPP specification licensing compliance
- Open source dataset usage (TSpec-LLM)
- MIT license for server implementation
## Deployment Architecture
### Development Deployment
- Local development environment
- Direct STDIO connection
- Hot reload during development
### Production Deployment
- Containerized deployment (Docker)
- Process management (PM2)
- Load balancing for multiple instances
- Monitoring and logging
### Cloud Deployment Options
- **Container Services**: AWS ECS, Azure Container Instances
- **Serverless**: AWS Lambda, Azure Functions (with modifications)
- **Kubernetes**: Full orchestration for enterprise deployment
This technical approach provides a robust, scalable foundation for intelligent 3GPP specification access while maintaining the flexibility to evolve and add new capabilities as requirements grow.