UNPKG

3gpp-mcp-server

Version:

MCP Server for querying 3GPP telecom protocol specifications

444 lines (354 loc) 12.6 kB
# Technical Approach & Architecture ## Overview This document outlines the technical approach, architecture decisions, and implementation strategy for the 3GPP MCP Server. Our approach combines semantic search, domain-specific knowledge modeling, and the Model Context Protocol to create an intelligent interface for 3GPP telecommunications specifications. ## Architecture Overview ### High-Level System Architecture ```mermaid graph TB subgraph "Client Layer" A[Claude Desktop] --> B[Other MCP Clients] B --> C[Custom Applications] end subgraph "MCP Protocol Layer" D[MCP Server Interface] D1[Tools Handler] --> D D2[Resources Handler] --> D D3[Prompts Handler] --> D end subgraph "Intelligence Layer" E[Specification Manager] F[Search Engine] G[Document Processor] H[RAG Engine] end subgraph "Data Layer" I[TSpec-LLM Dataset] J[Vector Database] K[Metadata Cache] L[Configuration Store] end A --> D D1 --> E D1 --> F D2 --> E D3 --> G E --> I F --> J G --> I H --> J E --> K F --> K ``` ## Core Components ### 1. MCP Server Interface (`src/index.ts`) **Responsibility**: Implements the Model Context Protocol specification **Key Features**: - **Tools Handlers**: Process semantic search, specification lookup, protocol queries - **Resources Handlers**: Provide access to catalogs, timelines, protocol lists - **Prompts Handlers**: Generate structured prompts for complex queries - **Error Handling**: Robust error management and user feedback **Implementation Details**: ```typescript class GPPMCPServer { - server: MCP Server instance - specManager: Manages specification metadata - searchEngine: Handles intelligent search - documentProcessor: Processes specification content } ``` ### 2. Specification Manager (`src/utils/specification-manager.ts`) **Responsibility**: Manages the 3GPP specification collection and metadata **Core Capabilities**: - **Specification Loading**: Discovers and loads specifications from TSpec-LLM dataset - **Metadata Extraction**: Extracts titles, series, releases, keywords from documents - **Catalog Management**: Maintains searchable catalog of all specifications - **Protocol Mapping**: Maps protocols to their defining specifications **Data Structures**: ```typescript interface GPPSpecification { id: string // e.g., "TS 24.301" title: string // Human-readable title series: string // Specification series (24, 25, 36, 38, etc.) release: string // 3GPP release (Rel-15, Rel-16, etc.) version: string // Specification version filePath: string // Path to source document format: 'markdown' | 'docx' size: number // File size in bytes lastModified: Date metadata?: GPPSpecMetadata } ``` ### 3. Search Engine (`src/utils/search-engine.ts`) **Responsibility**: Provides intelligent search across 3GPP specifications **Search Algorithms**: - **Semantic Search**: Content-based relevance scoring - **Metadata Filtering**: Filter by series, release, keywords - **Cross-Reference Resolution**: Find related specifications - **Contextual Ranking**: Domain-aware result ranking **Search Process**: 1. **Query Analysis**: Parse natural language query 2. **Filtering**: Apply series/release constraints 3. **Semantic Matching**: Score documents against query 4. **Result Ranking**: Sort by relevance and domain context 5. **Context Generation**: Extract relevant snippets ### 4. Document Processor (`src/utils/document-processor.ts`) **Responsibility**: Extracts and processes content from specification documents **Processing Pipeline**: - **Content Extraction**: Parse markdown and DOCX formats - **Metadata Parsing**: Extract technical metadata from documents - **Section Analysis**: Identify document structure and key sections - **Keyword Extraction**: Identify 3GPP-specific terminology - **Summary Generation**: Create structured summaries **Supported Formats**: - **Markdown (.md)**: Primary format from TSpec-LLM dataset - **DOCX (.docx)**: Microsoft Word format support (via mammoth.js) - **Future**: PDF support for legacy specifications ## Data Architecture ### TSpec-LLM Dataset Integration **Dataset Characteristics**: - **Size**: 13.5 GB, 30,137 documents, 535M words - **Coverage**: 3GPP Releases 8-19 (1999-2023) - **Format**: Processed markdown with preserved structure - **Quality**: Full content preservation including tables, formulas **File Organization**: ``` TSpec-LLM/ ├── Rel-8/ │ ├── series-21/ │ ├── series-22/ │ └── ... ├── Rel-9/ ├── ... └── Rel-19/ ``` **Loading Strategy**: 1. **Lazy Loading**: Load specifications on-demand 2. **Metadata Caching**: Cache frequently accessed metadata 3. **Incremental Indexing**: Build search index progressively 4. **Memory Management**: Efficient handling of large dataset ### Data Model Design **Specification Metadata Model**: ```typescript interface GPPSpecMetadata { workingGroup?: string // Responsible working group technicalArea?: string // Technical domain keywords?: string[] // 3GPP-specific terms abstract?: string // Document abstract stage?: 1 | 2 | 3 // 3GPP development stage dependencies?: string[] // Referenced specifications } ``` **Protocol Model**: ```typescript interface GPPProtocol { name: string // Short name (NAS, RRC) fullName: string // Full protocol name series: string // Primary specification series specifications: string[] // Defining specifications procedures?: ProtocolProcedure[] } ``` ## Search & Retrieval Strategy ### Multi-Level Search Architecture **Level 1: Metadata Search** - Fast filtering by series, release, specification ID - Keyword matching in titles and abstracts - Protocol and procedure name matching **Level 2: Content Search** - Full-text search within document content - Section-aware search (scope, procedures, definitions) - Technical term recognition and expansion **Level 3: Semantic Search** (Future Enhancement) - Vector embeddings for semantic similarity - Cross-document concept matching - Contextual relevance scoring ### Relevance Scoring Algorithm **Multi-Factor Scoring**: ```typescript relevanceScore = ( 0.4 * titleMatch + // Title keyword matches 0.3 * keywordMatch + // Metadata keyword matches 0.2 * abstractMatch + // Abstract content matches 0.3 * specIdMatch + // Direct specification references 0.2 * contextBoost // Domain context boost ) ``` **Domain Context Factors**: - Protocol relationships (NAS ↔ Authentication) - Release evolution (Rel-15 → Rel-16 changes) - Technical dependencies (RRC → PDCP → RLC) ## Query Processing Pipeline ### Natural Language Query Processing **Pipeline Stages**: 1. **Query Parsing**: Extract key terms and intent 2. **Domain Mapping**: Map terms to 3GPP concepts 3. **Query Expansion**: Add related terms and synonyms 4. **Filter Application**: Apply series/release constraints 5. **Search Execution**: Execute multi-level search 6. **Result Synthesis**: Combine and rank results 7. **Response Generation**: Format for user consumption **Example Query Flow**: ``` Input: "How does 5G NAS authentication work?" 1. Parse: ["5G", "NAS", "authentication", "work"] 2. Map: 5G → Rel-15+, NAS → series-24, authentication → security procedures 3. Expand: [authentication, security, SUCI, SUPI, AUSF, UDM] 4. Filter: series=24, release≥Rel-15 5. Search: Find TS 24.501, related security specs 6. Synthesize: Combine procedure information 7. Generate: Structured response with steps and references ``` ### Response Generation Strategy **Structured Response Format**: ```typescript interface QueryResponse { summary: string // Brief answer overview details: string[] // Detailed explanations procedures?: string[] // Step-by-step procedures specifications: string[] // Referenced specifications relatedTopics: string[] // Suggested related queries messageFlows?: MessageFlow[] // Protocol message flows } ``` ## Performance Considerations ### Optimization Strategies **Memory Management**: - Lazy loading of specification content - LRU cache for frequently accessed documents - Memory-mapped file access for large documents **Query Performance**: - Metadata index for fast filtering - Bloom filters for existence checks - Result caching with TTL expiration **Scalability Design**: - Horizontal scaling support for search operations - Stateless server design for multiple instances - Database connection pooling ### Performance Targets **Response Time Goals**: - Simple queries (spec lookup): < 500ms - Complex searches: < 3 seconds - Cross-specification analysis: < 5 seconds **Throughput Goals**: - 100+ concurrent queries - 1000+ specifications loaded - Memory usage < 2GB per instance ## Integration Architecture ### MCP Protocol Implementation **Tool Interface**: ```typescript interface MCPTool { name: string description: string inputSchema: JSONSchema handler: (params: any) => Promise<MCPResponse> } ``` **Resource Interface**: ```typescript interface MCPResource { uri: string name: string description: string mimeType: string generator: () => Promise<string> } ``` **Prompt Interface**: ```typescript interface MCPPrompt { name: string description: string arguments: PromptArgument[] generator: (args: any) => Promise<PromptMessage[]> } ``` ### Client Integration Patterns **Claude Desktop Integration**: ```json { "mcpServers": { "3gpp-server": { "command": "node", "args": ["dist/index.js"], "cwd": "/path/to/3gpp-mcp-server" } } } ``` **Custom Client Integration**: ```typescript const client = new Client({ name: "3gpp-client", version: "1.0.0" }, { capabilities: {} }); await client.connect(transport); const tools = await client.listTools(); ``` ## Technology Stack ### Core Technologies **Runtime Environment**: - **Node.js 18+**: JavaScript runtime - **TypeScript**: Type safety and developer experience - **ES2022**: Modern JavaScript features **MCP Implementation**: - **@modelcontextprotocol/sdk**: Official MCP SDK - **Zod**: Schema validation and type inference **Document Processing**: - **fs-extra**: Enhanced file system operations - **mammoth.js**: DOCX to text conversion (future) - **markdown-it**: Markdown parsing (future enhancement) **Future Enhancements**: - **ChromaDB**: Vector database for semantic search - **OpenAI Embeddings**: Semantic similarity computation - **Redis**: Caching and session management ### Development Tools **Build & Development**: - **TypeScript Compiler**: Source transformation - **ESLint**: Code quality and consistency - **Jest**: Unit testing framework - **ts-node**: Development runtime **Documentation**: - **Markdown**: Documentation format - **Mermaid**: Diagram generation - **TypeDoc**: API documentation generation ## Security & Privacy ### Security Considerations **Data Protection**: - Read-only access to specification documents - No modification of source data - Secure file path handling **Network Security**: - STDIO transport (no network exposure by default) - Optional HTTPS transport for remote access - Input validation and sanitization **Access Control**: - MCP client authentication (when applicable) - Rate limiting for query operations - Resource usage monitoring ### Privacy Considerations **Data Handling**: - No user query logging by default - Anonymized usage statistics only - No personally identifiable information storage **Compliance**: - 3GPP specification licensing compliance - Open source dataset usage (TSpec-LLM) - MIT license for server implementation ## Deployment Architecture ### Development Deployment - Local development environment - Direct STDIO connection - Hot reload during development ### Production Deployment - Containerized deployment (Docker) - Process management (PM2) - Load balancing for multiple instances - Monitoring and logging ### Cloud Deployment Options - **Container Services**: AWS ECS, Azure Container Instances - **Serverless**: AWS Lambda, Azure Functions (with modifications) - **Kubernetes**: Full orchestration for enterprise deployment This technical approach provides a robust, scalable foundation for intelligent 3GPP specification access while maintaining the flexibility to evolve and add new capabilities as requirements grow.